Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William J. Kraemer is active.

Publication


Featured researches published by William J. Kraemer.


Medicine and Science in Sports and Exercise | 2004

Fundamentals of resistance training: Progression and exercise prescription

William J. Kraemer; Nicholas A. Ratamess

Progression in resistance training is a dynamic process that requires an exercise prescription process, evaluation of training progress, and careful development of target goals. The process starts with the determination of individual needs and training goals. This involves decisions regarding questions as to what muscles must be trained, injury prevention sites, metabolic demands of target training goals, etc. The single workout must then be designed reflecting these targeted program goals including the choice of exercises, order of exercise, amount of rest used between sets and exercises, number of repetitions and sets used for each exercise, and the intensity of each exercise. For progression, these variables must then be varied over time and the exercise prescription altered to maintain or advance specific training goals and to avoid overtraining. A careful system of goal targeting, exercise testing, proper exercise technique, supervision, and optimal exercise prescription all contribute to the successful implementation of a resistance training program.


Sports Medicine | 2005

Hormonal responses and adaptations to resistance exercise and training

William J. Kraemer; Nicholas A. Ratamess

AbstractResistance exercise has been shown to elicit a significant acute hormonal response. It appears that this acute response is more critical to tissue growth and remodelling than chronic changes in resting hormonal concentrations, as many studies have not shown a significant change during resistance training despite increases in muscle strength and hypertrophy. Anabolic hormones such as testosterone and the superfamily of growth hormones (GH) have been shown to be elevated during 15–30 minutes of post-resistance exercise providing an adequate stimulus is present. Protocols high in volume, moderate to high in intensity, using short rest intervals and stressing a large muscle mass, tend to produce the greatest acute hormonal elevations (e.g. testosterone, GH and the catabolic hormone cortisol) compared with low-volume, high-intensity protocols using long rest intervals. Other anabolic hormones such as insulin and insulin-like growth factor-1 (IGF-1) are critical to skeletal muscle growth. Insulin is regulated by blood glucose and amino acid levels. However, circulating IGF-1 elevations have been reported following resistance exercise presumably in response to GH-stimulated hepatic secretion. Recent evidence indicates that muscle isoforms of IGF-1 may play a substantial role in tissue remodelling via up-regulation by mechanical signalling (i.e. increased gene expression resulting from stretch and tension to the muscle cytoskeleton leading to greater protein synthesis rates). Acute elevations in catecholamines are critical to optimal force production and energy liberation during resistance exercise. More recent research has shown the importance of acute hormonal elevations and mechanical stimuli for subsequent up- and down-regulation of cytoplasmic steroid receptors needed to mediate the hormonal effects. Other factors such as nutrition, overtraining, detraining and circadian patterns of hormone secretion are critical to examining the hormonal responses and adaptations to resistance training.


Journal of Strength and Conditioning Research | 2009

Youth Resistance Training: Updated Position Statement Paper From the National Strength and Conditioning Association

Avery D. Faigenbaum; William J. Kraemer; Cameron J.R. Blimkie; Ian Jeffreys; Lyle J. Micheli; Mike Nitka; Thomas W. Rowland

Faigenbaum, AD, Kraemer, WJ, Blimkie, CJR, Jeffreys, I, Micheli, LJ, Nitka, M, and Rowland, TW. Youth resistance training: Updated position statement paper from the National Strength and Conditioning Association. J Strength Cond Res 23(5): S60-S79, 2009-Current recommendations suggest that school-aged youth should participate daily in 60 minutes or more of moderate to vigorous physical activity that is developmentally appropriate and enjoyable and involves a variety of activities (219). Not only is regular physical activity essential for normal growth and development, but also a physically active lifestyle during the pediatric years may help to reduce the risk of developing some chronic diseases later in life (196). In addition to aerobic activities such as swimming and bicycling, research increasingly indicates that resistance training can offer unique benefits for children and adolescents when appropriately prescribed and supervised (28,66,111,139,147,234). The qualified acceptance of youth resistance training by medical, fitness, and sport organizations is becoming universal (5,6,8,12,18,33,104,167,192,215). Nowadays, comprehensive school-based programs are specifically designed to enhance health-related components of physical fitness, which include muscular strength (169). In addition, the health club and sport conditioning industry is getting more involved in the youth fitness market. In the U.S.A., the number of health club members between the ages of 6 and 17 years continues to increase (127,252) and a growing number of private sport conditioning centers now cater to young athletes. Thus, as more children and adolescents resistance train in schools, health clubs, and sport training centers, it is imperative to determine safe, effective, and enjoyable practices by which resistance training can improve the health, fitness, and sports performance of younger populations. The National Strength and Conditioning Association (NSCA) recognizes and supports the premise that many of the benefits associated with adult resistance training programs are attainable by children and adolescents who follow age-specific resistance training guidelines. The NSCA published the first position statement paper on youth resistance training in 1985 (170) and revised this statement in 1996 (72). The purpose of the present report is to update and clarify the 1996 recommendations on 4 major areas of importance. These topics include (a) the potential risks and concerns associated with youth resistance training, (b) the potential health and fitness benefits of youth resistance training, (c) the types and amount of resistance training needed by healthy children and adolescents, and (d) program design considerations for optimizing long-term training adaptations. The NSCA based this position statement paper on a comprehensive analysis of the pertinent scientific evidence regarding the anatomical, physiological, and psychosocial effects of youth resistance training. An expert panel of exercise scientists, physicians, and health/physical education teachers with clinical, practical, and research expertise regarding issues related to pediatric exercise science, sports medicine, and resistance training contributed to this statement. The NSCA Research Committee reviewed this report before the formal endorsement by the NSCA. For the purpose of this article, the term children refers to boys and girls who have not yet developed secondary sex characteristics (approximately up to the age of 11 years in girls and 13 years in boys; Tanner stages 1 and 2 of sexual maturation). This period of development is referred to as preadolescence. The term adolescence refers to a period between childhood and adulthood and includes girls aged 12-18 years and boys aged 14-18 years (Tanner stages 3 and 4 of sexual maturation). The terms youth and young athletes are broadly defined in this report to include both children and adolescents. By definition, the term resistance training refers to a specialized method of conditioning, which involves the progressive use of a wide range of resistive loads and a variety of training modalities designed to enhance health, fitness, and sports performance. Although the term resistance training, strength training, and weight training are sometimes used synonymously, the term resistance training encompasses a broader range of training modalities and a wider variety of training goals. The term weightlifting refers to a competitive sport that involves the performance of the snatch and clean and jerk lifts. This article builds on previous recommendations from the NSCA and should serve as the prevailing statement regarding youth resistance training. It is the current position of the NSCA that:A properly designed and supervised resistance training program is relatively safe for youth.A properly designed and supervised resistance training program can enhance the muscular strength and power of youth.A properly designed and supervised resistance training program can improve the cardiovascular risk profile of youth.A properly designed and supervised resistance training program can improve motor skill performance and may contribute to enhanced sports performance of youth.A properly designed and supervised resistance training program can increase a young athletes resistance to sports-related injuries.A properly designed and supervised resistance training program can help improve the psychosocial well-being of youth.A properly designed and supervised resistance training program can help promote and develop exercise habits during childhood and adolescence.


European Journal of Applied Physiology | 2000

Neuromuscular adaptation during prolonged strength training, detraining and re-strength-training in middle-aged and elderly people

Keijo Häkkinen; Markku Alen; M. Kallinen; Robert U. Newton; William J. Kraemer

Abstract Effects of a 24-week strength training performed twice weekly (24 ST) (combined with explosive exercises) followed by either a 3-week detraining (3 DT) and a 21-week re-strength-training (21 RST) (experiment A) or by a 24-week detraining (24 DT) (experiment B) on neural activation of the agonist and antagonist leg extensors, muscle cross-sectional area (CSA) of the quadriceps femoris, maximal isometric and one repetition maximum (1-RM) strength and jumping (J) and walking (W) performances were examined. A group of middle-aged (M, 37–44 years, n=12) and elderly (E, 62–77, n=10) and another group of M (35–45, n=7) and E (63–78, n=7) served as subjects. In experiment A, the 1-RM increased substantially during 24 ST in M (27%, P < 0.001) and E (29%, P < 0.001) and in experiment B in M (29%, P < 0.001) and E (23%, P < 0.01). During 21 RST the 1-RM was increased by 5% at week 48 (P < 0.01) in M and 3% at week 41 in E (n.s., but P < 0.05 at week 34). In experiment A the integrated electromyogram (IEMG) of the vastus muscles in the 1-RM increased during 24 ST in both M (P < 0.05) and E (P < 0.001) and during 21 RST in M for the right (P < 0.05) and in E for both legs (P < 0.05). The biceps femoris co-activation during the 1-RM leg extension decreased during the first 8-week training in M (from 29 ± 5% to 25 ± 3%, n.s.) and especially in E (from 41 ± 11% to 32 ± 9%, P < 0.05). The CSA increased by 7% in M (P < 0.05) and by 7% in E (P < 0.001), and by 7% (n.s.) in M and by 3% in E (n.s.) during 24 ST periods. Increases of 18% (P < 0.001) and 12% (P < 0.05) in M and 22% (P < 0.001) and 26% (P < 0.05) in E occurred in J. W speed increased (P < 0.05) in both age groups. The only decrease during 3 DT was in maximal isometric force in M by 6% (P < 0.05) and by 4% (n.s.) in E. During 24 DT the CSA decreased in both age groups (P < 0.01), the 1-RM decreased by 6% (P < 0.05) in M and by 4% (P < 0.05) in E and isometric force by 12% (P < 0.001) in M and by 9% (P < 0.05) in E, respectively, while J and W remained unaltered. The strength gains were accompanied by increased maximal voluntary neural activation of the agonists in both age groups with reduced antagonist co-activation in the elderly during the initial training phases. Neural adaptation seemed to play a greater role than muscle hypertrophy. Short-term detraining led to only minor changes, while prolonged detraining resulted in muscle atrophy and decreased voluntary strength, but explosive jumping and walking actions in both age groups appeared to remain elevated for quite a long time by compensatory types of physical activities when performed on a regular basis.


Medicine and Science in Sports and Exercise | 1999

Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training.

Jeff S. Volek; Noel D. Duncan; Scott A. Mazzetti; Robert S. Staron; Margot Putukian; Ana L. Gómez; David R. Pearson; W. J. Fink; William J. Kraemer

PURPOSE The purpose of this study was to examine the effect of creatine supplementation in conjunction with resistance training on physiological adaptations including muscle fiber hypertrophy and muscle creatine accumulation. METHODS Nineteen healthy resistance-trained men were matched and then randomly assigned in a double-blind fashion to either a creatine (N = 10) or placebo (N = 9) group. Periodized heavy resistance training was performed for 12 wk. Creatine or placebo capsules were consumed (25 g x d(-1)) for 1 wk followed by a maintenance dose (5 g x d(-1)) for the remainder of the training. RESULTS After 12 wk, significant (P < or = 0.05) increases in body mass and fat-free mass were greater in creatine (6.3% and 6.3%, respectively) than placebo (3.6% and 3.1%, respectively) subjects. After 12 wk, increases in bench press and squat were greater in creatine (24% and 32%, respectively) than placebo (16% and 24%, respectively) subjects. Compared with placebo subjects, creatine subjects demonstrated significantly greater increases in Type I (35% vs 11%), IIA (36% vs 15%), and IIAB (35% vs 6%) muscle fiber cross-sectional areas. Muscle total creatine concentrations were unchanged in placebo subjects. Muscle creatine was significantly elevated after 1 wk in creatine subjects (22%), and values remained significantly greater than placebo subjects after 12 wk. Average volume lifted in the bench press during training was significantly greater in creatine subjects during weeks 5-8. No negative side effects to the supplementation were reported. CONCLUSION Creatine supplementation enhanced fat-free mass, physical performance, and muscle morphology in response to heavy resistance training, presumably mediated via higher quality training sessions.


European Journal of Applied Physiology | 2003

Muscle hypertrophy, hormonal adaptations and strength development during strength training in strength-trained and untrained men

Juha P. Ahtiainen; Arto Pakarinen; Markku Alen; William J. Kraemer; Keijo Häkkinen

Hormonal and neuromuscular adaptations to strength training were studied in eight male strength athletes (SA) and eight non-strength athletes (NA). The experimental design comprised a 21-week strength-training period. Basal hormonal concentrations of serum total testosterone (T), free testosterone (FT) and cortisol (C) and maximal isometric strength, right leg 1 repetition maximum (RM) of the leg extensors were measured at weeks 0, 7, 14 and 21. Muscle cross-sectional area (CSA) of the quadriceps femoris was measured by magnetic resonance imaging (MRI) at weeks 0 and 21. In addition, the acute heavy resistance exercises (AHRE) (bilateral leg extension, five sets of ten RM, with a 2-min rest between sets) including blood samples for the determination of serum T, FT, C, and GH concentrations were assessed before and after the 21-week training. Significant increases of 20.9% in maximal force and of 5.6% in muscle CSA in NA during the 21-week strength training period were greater than those of 3.9% and −1.8% in SA, respectively. There were no significant changes in serum basal hormone concentrations during the 21-week experiment. AHRE led to significant acute decreases in isometric force and acute increases in serum hormones both at weeks 0 and 21. Basal T concentrations (mean of 0, 7, 14 and 21 weeks) and changes in isometric force after the 21-week period correlated with each other (r=0.84, P<0.01) in SA. The individual changes in the acute T responses between weeks 0 and 21 and the changes in muscle CSA during the 21-week training correlated with each other (r=0.76, P<0.05) in NA. The correlations between T and the changes in isometric strength and in muscle CSA suggest that both serum basal testosterone concentrations and training-induced changes in acute testosterone responses may be important factors for strength development and muscle hypertrophy.


Exercise and Sport Sciences Reviews | 1996

Strength and power training: physiological mechanisms of adaptation.

William J. Kraemer; Steven J. Fleck; William J. Evans

Adaptations in resistance training are focused on the development and maintenance of the neuromuscular unit needed for force production [97, 136]. The effects of training, when using this system, affect many other physiological systems of the body (e.g., the connective tissue, cardiovascular, and endocrine systems) [16, 18, 37, 77, 83]. Training programs are highly specific to the types of adaptation that occur. Activation of specific patterns of motor units in training dictate what tissue and how other physiological systems will be affected by the exercise training. The time course of the development of the neuromuscular system appears to be dominated in the early phase by neural factors with associated changes in the types of contractile proteins. In the later adaptation phase, muscle protein increases, and the contractile unit begins to contribute the most to the changes in performance capabilities. A host of other factors can affect the adaptations, such as functional capabilities of the individual, age, nutritional status, and behavioral factors (e.g., sleep and health habits). Optimal adaptation appears to be related to the use of specific resistance training programs to meet individual training objectives.


European Journal of Applied Physiology | 1997

Influence of load and stretch shortening cycle on the kinematics, kinetics and muscle activation that occurs during explosive upper-body movements

Robert U Newton; Aron J. Murphy; Brendan Humphries; Greg J. Wilson; William J. Kraemer; Keijo Häkkinen

Abstract Although explosive power in lower-body movements has been extensively studied, there is a paucity of research examining such movements in the upper body. This study aimed to investigate the influence of load and the stretch shortening cycle (SSC) on the kinematics, kinetics, and muscle activation that occurs during maximal effort throws. A total of 17 male subjects performed SSC and concentric only (CO) bench throws using loads of 15%, 30%, 45%, 60%, 75%, 90% and 100% of their previously determined one repetition maximum bench press. The displacement, velocity, acceleration, force and power output as well as the electromyogram (EMG) from pectoralis major, anterior deltoid, and triceps brachii were recorded for each throw. The results were compared using multivariate analysis of variance with repeated measures. A criterion alpha level of P ≤ 0.05 was used. Similar force velocity power relationships were determined for this multijoint upper-body movement as has been found for isolated muscles, single joint movements, and vertical jumping. The highest power output was produced at the 30% [563 (104) W] and 45% [560 (86) W] loads during the SSC throws. Force output increased as a function of load; however, even the lighter loads resulted in considerable force due to the high accelerations produced. Average velocity, average and peak force, and average and peak power output were significantly higher for the SSC throws compared to the CO throws. However, peak velocity and height thrown were not potentiated by performing the pre-stretch because the duration and range of movement allowed the ability of the muscle to generate force at high shortening velocities to dominate the resulting throw. As such, explosive movements involving longer concentric actions than experienced during brief SSC movements may be limited by the ability of the muscle to produce force during fast contraction velocities.


Journal of Strength and Conditioning Research | 2007

Foot Strike Patterns Of Runners At The 15-km Point During An Elite-level Half Marathon

Hiroshi Hasegawa; Takeshi Yamauchi; William J. Kraemer

There are various recommendations by many coaches regarding foot landing techniques in distance running that are meant to improve running performance and prevent injuries. Several studies have investigated the kinematic and kinetic differences between rearfoot strike (RFS), midfoot strike (MFS), and forefoot strike (FFS) patterns at foot landing and their effects on running efficiency on a treadmill and over ground conditions. However, little is known about the actual condition of the foot strike pattern during an actual road race at the elite level of competition. The purpose of the present study was to document actual foot strike patterns during a half marathon in which elite international level runners, including Olympians, compete. Four hundred fifteen runners were filmed by 2 120-Hz video cameras in the height of 0.15 m placed at the 15.0-km point and obtained sagittal foot landing and taking off images for 283 runners. Rearfoot strike was observed in 74.9% of all analyzed runners, MFS in 23.7%, and FFS in 1.4%. The percentage of MFS was higher in the faster runners group, when all runners were ranked and divided into 50 runner groups at the 15.0-km point of the competition. In the top 50, which included up to the 69th place runner in actual order who passed the 15-km point at 45 minutes, 53 second (this speed represents 5.45 m·s-1, or 15 minutes, 17 seconds per 5 km), RFS, MFS, and FFS were 62.0, 36.0, and 2.0%, respectively. Contact time (CT) clearly increased for the slower runners, or the placement order increased (r = 0.71, p ≤ 0.05). The CT for RFS + FFS for every 50 runners group significantly increased with increase of the placement order. The CT for RFS was significantly longer than MFS + FFS (200.0 ± 21.3 vs. 183.0 ± 16 millisecond). Apparent inversion (INV) of the foot at the foot strike was observed in 42% of all runners. The percentage of INV for MFS was higher than for RFS and FFS (62.5, 32.0, and 50%, respectively). The CT with INV for MFS + FFS was significantly shorter than the CT with and without INV for RFS. Furthermore, the CT with INV was significantly shorter than push-off time without INV for RFS. The findings of this study indicate that foot strike patterns are related to running speed. The percentage of RFS increases with the decreasing of the running speed; conversely, the percentage of MFS increases as the running speed increases. A shorter contact time and a higher frequency of inversion at the foot contact might contribute to higher running economy.


Journal of The American Dietetic Association | 1997

Creatine Supplementation Enhances Muscular Performance During High-Intensity Resistance Exercise

Jeff S. Volek; William J. Kraemer; Jill A. Bush; Mark Boetes; Thomas Incledon; Kristine L. Clark; James Lynch

OBJECTIVE This study was undertaken to investigate the influence of oral supplementation with creatine monohydrate on muscular performance during repeated sets of high-intensity resistance exercise. SUBJECTS/DESIGN Fourteen active men were randomly assigned in a double-blind fashion to either a creatine group (n = 7) or a placebo group (n = 7). Both groups performed a bench press exercise protocol (5 sets to failure using each subjects predetermined 10-repetition maximum) and a jump squat exercise protocol (5 sets of 10 repetitions using 30% of each subjects 1-repetition maximum squat) on three different occasions (T1, T2, and T3) separated by 6 days. INTERVENTION Before T1, both groups received no supplementation. From T1 to T2, both groups ingested placebo capsules. From T2 to T3, the creatine group ingested 25 g creatine monohydrate per day, and the placebo group ingested an equivalent amount of placebo. MAIN OUTCOME MEASURES Total repetitions for each set of bench presses and peak power output for each set of jump squats were determined. Other measures included assessment of diet, body mass, skinfold thickness, and preexercise and 5-minute postexercise lactate concentrations. RESULTS Lifting performance was not altered for either exercise protocol after ingestion of the placebos. Creatine supplementation resulted in a significant improvement in peak power output during all 5 sets of jump squats and a significant improvement in repetitions during all 5 sets of bench presses. After creatine supplementation, postexercise lactate concentrations were significantly higher after the bench press but not the jump squat. A significant increase in body mass of 1.4 kg (range = 0.0 to 2.7 kg) was observed after creatine ingestion. CONCLUSION One week of creatine supplementation (25 g/day) enhances muscular performance during repeated sets of bench press and jump squat exercise.

Collaboration


Dive into the William J. Kraemer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keijo Häkkinen

University of Jyväskylä

View shared research outputs
Top Co-Authors

Avatar

Bradley C. Nindl

United States Army Research Institute of Environmental Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Disa L. Hatfield

University of Rhode Island

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maren S. Fragala

University of Central Florida

View shared research outputs
Researchain Logo
Decentralizing Knowledge