Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert Sladek is active.

Publication


Featured researches published by Robert Sladek.


Nature | 2007

A genome-wide association study identifies novel risk loci for type 2 diabetes

Robert Sladek; Ghislain Rocheleau; Johan Rung; Christian Dina; Lishuang Shen; David Serre; Philippe Boutin; Daniel Vincent; Alexandre Belisle; Samy Hadjadj; Beverley Balkau; Barbara Heude; Guillaume Charpentier; Thomas J. Hudson; Alexandre Montpetit; Alexey V. Pshezhetsky; Marc Prentki; Barry I. Posner; David J. Balding; David Meyre; Constantin Polychronakos; Philippe Froguel

Type 2 diabetes mellitus results from the interaction of environmental factors with a combination of genetic variants, most of which were hitherto unknown. A systematic search for these variants was recently made possible by the development of high-density arrays that permit the genotyping of hundreds of thousands of polymorphisms. We tested 392,935 single-nucleotide polymorphisms in a French case–control cohort. Markers with the most significant difference in genotype frequencies between cases of type 2 diabetes and controls were fast-tracked for testing in a second cohort. This identified four loci containing variants that confer type 2 diabetes risk, in addition to confirming the known association with the TCF7L2 gene. These loci include a non-synonymous polymorphism in the zinc transporter SLC30A8, which is expressed exclusively in insulin-producing β-cells, and two linkage disequilibrium blocks that contain genes potentially involved in β-cell development or function (IDE–KIF11–HHEX and EXT2–ALX4). These associations explain a substantial portion of disease risk and constitute proof of principle for the genome-wide approach to the elucidation of complex genetic traits.


Nature Genetics | 2007

Genome-wide association scan identifies a colorectal cancer susceptibility locus on chromosome 8q24

Brent W. Zanke; Celia M. T. Greenwood; Jagadish Rangrej; Rafal Kustra; Albert Tenesa; Susan M. Farrington; James Prendergast; Sylviane Olschwang; Theodore Chiang; Edgar Crowdy; Vincent Ferretti; Philippe Laflamme; Saravanan Sundararajan; Stéphanie Roumy; Jean François Olivier; Frédérick Robidoux; Robert Sladek; Alexandre Montpetit; Peter J. Campbell; Stéphane Bézieau; Anne Marie O'Shea; George Zogopoulos; Michelle Cotterchio; Polly A. Newcomb; John R. McLaughlin; Ban Younghusband; Roger C. Green; Jane Green; Mary Porteous; Harry Campbell

Using a multistage genetic association approach comprising 7,480 affected individuals and 7,779 controls, we identified markers in chromosomal region 8q24 associated with colorectal cancer. In stage 1, we genotyped 99,632 SNPs in 1,257 affected individuals and 1,336 controls from Ontario. In stages 2–4, we performed serial replication studies using 4,024 affected individuals and 4,042 controls from Seattle, Newfoundland and Scotland. We identified one locus on chromosome 8q24 and another on 9p24 having combined odds ratios (OR) for stages 1–4 of 1.18 (trend; P = 1.41 × 10−8) and 1.14 (trend; P = 1.32 × 10−5), respectively. Additional analyses in 2,199 affected individuals and 2,401 controls from France and Europe supported the association at the 8q24 locus (OR = 1.16, trend; 95% confidence interval (c.i.): 1.07–1.26; P = 5.05 × 10−4). A summary across all seven studies at the 8q24 locus was highly significant (OR = 1.17, c.i.: 1.12–1.23; P = 3.16 × 10−11). This locus has also been implicated in prostate cancer.


Nature Genetics | 2009

Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations.

David Meyre; Jérôme Delplanque; Jean-Claude Chèvre; Cécile Lecoeur; Stéphane Lobbens; Sophie Gallina; Emmanuelle Durand; Vincent Vatin; Franck Degraeve; Christine Proença; Stefan Gaget; Antje Körner; Peter Kovacs; Wieland Kiess; Jean Tichet; Michel Marre; Anna-Liisa Hartikainen; Fritz Horber; Natascha Potoczna; Serge Hercberg; Claire Levy-Marchal; François Pattou; Barbara Heude; Maithe Tauber; Mark I. McCarthy; Alexandra I. F. Blakemore; Alexandre Montpetit; Constantin Polychronakos; Jacques Weill; Lachlan Coin

We analyzed genome-wide association data from 1,380 Europeans with early-onset and morbid adult obesity and 1,416 age-matched normal-weight controls. Thirty-eight markers showing strong association were further evaluated in 14,186 European subjects. In addition to FTO and MC4R, we detected significant association of obesity with three new risk loci in NPC1 (endosomal/lysosomal Niemann-Pick C1 gene, P = 2.9 × 10−7), near MAF (encoding the transcription factor c-MAF, P = 3.8 × 10−13) and near PTER (phosphotriesterase-related gene, P = 2.1 × 10−7).


Nature Genetics | 2009

A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk

Nabila Bouatia-Naji; Amélie Bonnefond; Christine Cavalcanti-Proença; Thomas Sparsø; Johan Holmkvist; Marion Marchand; Jérôme Delplanque; Stéphane Lobbens; Ghislain Rocheleau; Emmanuelle Durand; Franck De Graeve; Jean-Claude Chèvre; Knut Borch-Johnsen; Anna-Liisa Hartikainen; Aimo Ruokonen; Jean Tichet; Michel Marre; Jacques Weill; Barbara Heude; Maithe Tauber; Katleen Lemaire; Frans Schuit; Paul Elliott; Torben Jørgensen; Guillaume Charpentier; Samy Hadjadj; Stéphane Cauchi; Martine Vaxillaire; Robert Sladek; Sophie Visvikis-Siest

In genome-wide association (GWA) data from 2,151 nondiabetic French subjects, we identified rs1387153, near MTNR1B (which encodes the melatonin receptor 2 (MT2)), as a modulator of fasting plasma glucose (FPG; P = 1.3 × 10−7). In European populations, the rs1387153 T allele is associated with increased FPG (β = 0.06 mmol/l, P = 7.6 × 10−29, N = 16,094), type 2 diabetes (T2D) risk (odds ratio (OR) = 1.15, 95% CI = 1.08–1.22, P = 6.3 × 10−5, cases N = 6,332) and risk of developing hyperglycemia or diabetes over a 9-year period (hazard ratio (HR) = 1.20, 95% CI = 1.06–1.36, P = 0.005, incident cases N = 515). RT-PCR analyses confirm the presence of MT2 transcripts in neural tissues and show MT2 expression in human pancreatic islets and beta cells. Our data suggest a possible link between circadian rhythm regulation and glucose homeostasis through the melatonin signaling pathway.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Identification of a gene causing human cytochrome c oxidase deficiency by integrative genomics

Vamsi K. Mootha; Pierre Lepage; Kathleen Miller; Jakob Bunkenborg; Michael R. Reich; Majbrit Hjerrild; Terrye A. Delmonte; Amelie Villeneuve; Robert Sladek; Fenghao Xu; Grant A. Mitchell; Charles Morin; Matthias Mann; Thomas J. Hudson; Brian E. Robinson; John D. Rioux; Eric S. Lander

Identifying the genes responsible for human diseases requires combining information about gene position with clues about biological function. The recent availability of whole-genome data sets of RNA and protein expression provides powerful new sources of functional insight. Here we illustrate how such data sets can expedite disease-gene discovery, by using them to identify the gene causing Leigh syndrome, French-Canadian type (LSFC, Online Mendelian Inheritance in Man no. 220111), a human cytochrome c oxidase deficiency that maps to chromosome 2p16-21. Using four public RNA expression data sets, we assigned to all human genes a “score” reflecting their similarity in RNA-expression profiles to known mitochondrial genes. Using a large survey of organellar proteomics, we similarly classified human genes according to the likelihood of their protein product being associated with the mitochondrion. By intersecting this information with the relevant genomic region, we identified a single clear candidate gene, LRPPRC. Resequencing identified two mutations on two independent haplotypes, providing definitive genetic proof that LRPPRC indeed causes LSFC. LRPPRC encodes an mRNA-binding protein likely involved with mtDNA transcript processing, suggesting an additional mechanism of mitochondrial pathophysiology. Similar strategies to integrate diverse genomic information can be applied likewise to other disease pathways and will become increasingly powerful with the growing wealth of diverse, functional genomics data.


Nature | 2010

A new highly penetrant form of obesity due to deletions on chromosome 16p11.2

Robin G. Walters; Sébastien Jacquemont; Armand Valsesia; A.J. de Smith; Danielle Martinet; Johanna C. Andersson; Mario Falchi; Fangfang Chen; Joris Andrieux; Stéphane Lobbens; Bruno Delobel; Fanny Stutzmann; J. S. El-Sayed Moustafa; Jean-Claude Chèvre; Cécile Lecoeur; Vincent Vatin; Sonia Bouquillon; Jessica L. Buxton; Odile Boute; M. Holder-Espinasse; Jean-Marie Cuisset; M.-P. Lemaitre; A.-E. Ambresin; A. Brioschi; M. Gaillard; V. Giusti; Florence Fellmann; Alessandra Ferrarini; Nouchine Hadjikhani; Dominique Campion

Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western ‘obesogenic’ environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the ‘common disease, common variant’ hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) ≥ 40 kg m-2 or BMI standard deviation score ≥ 4; P = 6.4 × 10-8, odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the ‘power of the extreme’ in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.


Nature Genetics | 2009

Genetic variant near IRS1 is associated with type 2 diabetes, insulin resistance and hyperinsulinemia

Johan Rung; Stéphane Cauchi; Anders Albrechtsen; Lishuang Shen; Ghislain Rocheleau; Christine Cavalcanti-Proença; Francois Bacot; Beverley Balkau; Alexandre Belisle; Knut Borch-Johnsen; Guillaume Charpentier; Christian Dina; Emmanuelle Durand; Paul Elliott; Samy Hadjadj; Marjo-Riitta Järvelin; Jaana Laitinen; Torsten Lauritzen; Michel Marre; Alexander Mazur; D Meyre; Alexandre Montpetit; Charlotta Pisinger; Barry I. Posner; Pernille Poulsen; Anneli Pouta; Marc Prentki; Rasmus Ribel-Madsen; Aimo Ruokonen; Anelli Sandbaek

Genome-wide association studies have identified common variants that only partially explain the genetic risk for type 2 diabetes (T2D). Using genome-wide association data from 1,376 French individuals, we identified 16,360 SNPs nominally associated with T2D and studied these SNPs in an independent sample of 4,977 French individuals. We then selected the 28 best hits for replication in 7,698 Danish subjects and identified 4 SNPs showing strong association with T2D, one of which (rs2943641, P = 9.3 × 10−12, OR = 1.19) was located adjacent to the insulin receptor substrate 1 gene (IRS1). Unlike previously reported T2D risk loci, which predominantly associate with impaired beta cell function, the C allele of rs2943641 was associated with insulin resistance and hyperinsulinemia in 14,358 French, Danish and Finnish participants from population-based cohorts; this allele was also associated with reduced basal levels of IRS1 protein and decreased insulin induction of IRS1-associated phosphatidylinositol-3-OH kinase activity in human skeletal muscle biopsies.


Nature Genetics | 2008

Genome-wide analysis of transcript isoform variation in humans

Tony Kwan; David Benovoy; Christel Dias; Scott Gurd; Cathy Provencher; Patrick Beaulieu; Thomas J. Hudson; Robert Sladek; Jacek Majewski

We have performed a genome-wide analysis of common genetic variation controlling differential expression of transcript isoforms in the CEU HapMap population using a comprehensive exon tiling microarray covering 17,897 genes. We detected 324 genes with significant associations between flanking SNPs and transcript levels. Of these, 39% reflected changes in whole gene expression and 55% reflected transcript isoform changes such as splicing variants (exon skipping, alternative splice site use, intron retention), differential 5′ UTR (initiation of transcription) use, and differential 3′ UTR (alternative polyadenylation) use. These results demonstrate that the regulatory effects of genetic variation in a normal human population are far more complex than previously observed. This extra layer of molecular diversity may account for natural phenotypic variation and disease susceptibility.


Diabetes | 2009

Insulin Storage and Glucose Homeostasis in Mice Null for the Granule Zinc Transporter ZnT8 and Studies of the Type 2 Diabetes–Associated Variants

Tamara J. Nicolson; Elisa A. Bellomo; Nadeeja Wijesekara; Merewyn K. Loder; Jocelyn M. Baldwin; Armen V. Gyulkhandanyan; Vasilij Koshkin; Andrei I. Tarasov; Raffaella Carzaniga; Katrin Kronenberger; Tarvinder K. Taneja; Gabriela da Silva Xavier; Sarah Libert; Philippe Froguel; Raphael Scharfmann; Volodymir Stetsyuk; Philippe Ravassard; Helen Parker; Fiona M. Gribble; Frank Reimann; Robert Sladek; Stephen J. Hughes; Paul R.V. Johnson; Myriam Masseboeuf; Rémy Burcelin; Stephen A. Baldwin; Ming Liu; Roberto Lara-Lemus; Peter Arvan; Frans Schuit

OBJECTIVE Zinc ions are essential for the formation of hexameric insulin and hormone crystallization. A nonsynonymous single nucleotide polymorphism rs13266634 in the SLC30A8 gene, encoding the secretory granule zinc transporter ZnT8, is associated with type 2 diabetes. We describe the effects of deleting the ZnT8 gene in mice and explore the action of the at-risk allele. RESEARCH DESIGN AND METHODS Slc30a8 null mice were generated and backcrossed at least twice onto a C57BL/6J background. Glucose and insulin tolerance were measured by intraperitoneal injection or euglycemic clamp, respectively. Insulin secretion, electrophysiology, imaging, and the generation of adenoviruses encoding the low- (W325) or elevated- (R325) risk ZnT8 alleles were undertaken using standard protocols. RESULTS ZnT8−/− mice displayed age-, sex-, and diet-dependent abnormalities in glucose tolerance, insulin secretion, and body weight. Islets isolated from null mice had reduced granule zinc content and showed age-dependent changes in granule morphology, with markedly fewer dense cores but more rod-like crystals. Glucose-stimulated insulin secretion, granule fusion, and insulin crystal dissolution, assessed by total internal reflection fluorescence microscopy, were unchanged or enhanced in ZnT8−/− islets. Insulin processing was normal. Molecular modeling revealed that residue-325 was located at the interface between ZnT8 monomers. Correspondingly, the R325 variant displayed lower apparent Zn2+ transport activity than W325 ZnT8 by fluorescence-based assay. CONCLUSIONS ZnT8 is required for normal insulin crystallization and insulin release in vivo but not, remarkably, in vitro. Defects in the former processes in carriers of the R allele may increase type 2 diabetes risks.


Nature Genetics | 2012

Rare MTNR1B variants impairing melatonin receptor 1B function contribute to type 2 diabetes

Amélie Bonnefond; Nathalie Clement; Katherine Fawcett; Loic Yengo; Emmanuel Vaillant; Jean-Luc Guillaume; Aurélie Dechaume; Felicity Payne; Ronan Roussel; Sébastien Czernichow; Serge Hercberg; Samy Hadjadj; Beverley Balkau; Michel Marre; Olivier Lantieri; Claudia Langenberg; Nabila Bouatia-Naji; Guillaume Charpentier; Martine Vaxillaire; Ghislain Rocheleau; Nicholas J. Wareham; Robert Sladek; Mark I. McCarthy; Christian Dina; Inês Barroso; Ralf Jockers; Philippe Froguel

Genome-wide association studies have revealed that common noncoding variants in MTNR1B (encoding melatonin receptor 1B, also known as MT2) increase type 2 diabetes (T2D) risk. Although the strongest association signal was highly significant (P < 1 × 10−20), its contribution to T2D risk was modest (odds ratio (OR) of ∼1.10–1.15). We performed large-scale exon resequencing in 7,632 Europeans, including 2,186 individuals with T2D, and identified 40 nonsynonymous variants, including 36 very rare variants (minor allele frequency (MAF) <0.1%), associated with T2D (OR = 3.31, 95% confidence interval (CI) = 1.78–6.18; P = 1.64 × 10−4). A four-tiered functional investigation of all 40 mutants revealed that 14 were non-functional and rare (MAF < 1%), and 4 were very rare with complete loss of melatonin binding and signaling capabilities. Among the very rare variants, the partial- or total-loss-of-function variants but not the neutral ones contributed to T2D (OR = 5.67, CI = 2.17–14.82; P = 4.09 × 10−4). Genotyping the four complete loss-of-function variants in 11,854 additional individuals revealed their association with T2D risk (8,153 individuals with T2D and 10,100 controls; OR = 3.88, CI = 1.49–10.07; P = 5.37 × 10−3). This study establishes a firm functional link between MTNR1B and T2D risk.

Collaboration


Dive into the Robert Sladek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas J. Hudson

Ontario Institute for Cancer Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robin G. Walters

Clinical Trial Service Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge