Robert T. Thibault
McGill University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert T. Thibault.
Cortex | 2016
Robert T. Thibault; Michael Lifshitz; Amir Raz
Neurofeedback, one of the primary examples of self-regulation, designates a collection of techniques that train the brain and help to improve its function. Since coming on the scene in the 1960s, electroencephalography-neurofeedback has become a treatment vehicle for a host of mental disorders; however, its clinical effectiveness remains controversial. Modern imaging technologies of the living human brain (e.g., real-time functional magnetic resonance imaging) and increasingly rigorous research protocols that utilize such methodologies begin to shed light on the underlying mechanisms that may facilitate more effective clinical applications. In this paper we focus on recent technological advances in the field of human brain imaging and discuss how these modern methods may influence the field of neurofeedback. Toward this end, we outline the state of the evidence and sketch out future directions to further explore the potential merits of this contentious therapeutic prospect.
Psychotherapy and Psychosomatics | 2015
Robert T. Thibault; Michael Lifshitz; Niels Birbaumer; Amir Raz
Neurofeedback draws on multiple techniques that propel both healthy and patient populations to self-regulate neural activity. Since the 1970s, numerous accounts have promoted electroencephalography-neurofeedback as a viable treatment for a host of mental disorders. Today, while the number of health care providers referring patients to neurofeedback practitioners increases steadily, substantial methodological and conceptual caveats continue to pervade empirical reports. And yet, nascent imaging technologies (e.g., real-time functional magnetic resonance imaging) and increasingly rigorous protocols are paving the road towards more effective applications and a better scientific understanding of the underlying mechanisms. Here, we outline common neurofeedback methods, illuminate the tenuous state of the evidence, and sketch out future directions to further unravel the potential merits of this contentious therapeutic prospect.
Cortex | 2014
Robert T. Thibault; Michael Lifshitz; Jennifer M. Jones; Amir Raz
Neuroimaging is ubiquitous; however, neuroimagers seldom investigate the putative impact of posture on brain activity. Whereas participants in most psychological experiments sit upright, many prominent neuroimaging techniques (e.g., functional magnetic resonance imaging (fMRI)) require participants to lie supine. Such postural discrepancies may hold important implications for brain function in general and for fMRI in particular. We directly investigated the effect of posture on spontaneous brain dynamics by recording scalp electrical activity in four orthostatic conditions (lying supine, inclined at 45°, sitting upright, and standing erect). Here we show that upright versus supine posture increases widespread high-frequency oscillatory activity. Our electroencephalographic findings highlight the importance of posture as a determinant in neuroimaging. When generalizing supine imaging results to ecological human cognition, therefore, cognitive neuroscientists would benefit from considering the influence of posture on brain dynamics.
The Lancet Psychiatry | 2016
Robert T. Thibault; Amir Raz
This manuscript has been accepted for publication in The Lancet Group. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all disclaimers that apply to the journal apply to this manuscript. A definitive version was subsequently published in Lancet Psychiatry, [VOL 3, ISSUE 6, (June 1, 2016)] DOI http://dx.doi.org/10.1016/S22150366(16)30040-2
American Psychologist | 2017
Robert T. Thibault; Amir Raz
Advocates of neurofeedback make bold claims concerning brain regulation, treatment of disorders, and mental health. Decades of research and thousands of peer-reviewed publications support neurofeedback using electroencephalography (EEG-nf); yet, few experiments isolate the act of receiving feedback from a specific brain signal as a necessary precursor to obtain the purported benefits. Moreover, while psychosocial parameters including participant motivation and expectation, rather than neurobiological substrates, seem to fuel clinical improvement across a wide range of disorders, for-profit clinics continue to sprout across North America and Europe. Here, we highlight the tenuous evidence supporting EEG-nf and sketch out the weaknesses of this approach. We challenge classic arguments often articulated by proponents of EEG-nf and underscore how psychologists and mental health professionals stand to benefit from studying the ubiquitous placebo influences that likely drive these treatment outcomes.
Brain Imaging and Behavior | 2016
Robert T. Thibault; Michael Lifshitz; Amir Raz
Neuroimaging researchers tacitly assume that body-position scantily affects neural activity. However, whereas participants in most psychological experiments sit upright, many modern neuroimaging techniques (e.g., fMRI) require participants to lie supine. Sparse findings from electroencephalography and positron emission tomography suggest that body position influences cognitive processes and neural activity. Here we leverage multi-postural magnetoencephalography (MEG) to further unravel how physical stance alters baseline brain activity. We present resting-state MEG data from 12 healthy participants in three orthostatic conditions (i.e., lying supine, reclined at 45°, and sitting upright). Our findings demonstrate that upright, compared to reclined or supine, posture increases left-hemisphere high-frequency oscillatory activity over common speech areas. This proof-of-concept experiment establishes the feasibility of using MEG to examine the influence of posture on brain dynamics. We highlight the advantages and methodological challenges inherent to this approach and lay the foundation for future studies to further investigate this important, albeit little-acknowledged, procedural caveat.
The Lancet Psychiatry | 2016
Robert T. Thibault; Amir Raz
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all disclaimers that apply to the journal apply to this manuscript. A definitive version was subsequently published in Lancet Psychiatry, [VOL 3, ISSUE 11, (Nov 1, 2016)] DOI: http://dx.doi.org/10.1016/S22150366(16)30326-1
Frontiers in Human Neuroscience | 2016
Robert T. Thibault; Amir Raz
Whereas modern brain imaging often demands holding body positions incongruent with everyday life, posture governs both neural activity and cognitive performance. Humans commonly perform while upright; yet, many neuroimaging methodologies require participants to remain motionless and adhere to non-ecological comportments within a confined space. This inconsistency between ecological postures and imaging constraints undermines the transferability and generalizability of many a neuroimaging assay. Here we highlight the influence of posture on brain function and behavior. Specifically, we challenge the tacit assumption that brain processes and cognitive performance are comparable across a spectrum of positions. We provide an integrative synthesis regarding the increasingly prominent influence of imaging postures on autonomic function, mental capacity, sensory thresholds, and neural activity. Arguing that neuroimagers and cognitive scientists could benefit from considering the influence posture wields on both general functioning and brain activity, we examine existing imaging technologies and the potential of portable and versatile imaging devices (e.g., functional near infrared spectroscopy). Finally, we discuss ways that accounting for posture may help unveil the complex brain processes of everyday cognition.
Journal of Cognitive Neuroscience | 2017
Michael Lifshitz; Robert T. Thibault; Raquel R. Roth; Amir Raz
Cognitive neuroscientists rarely consider the influence that body position exerts on brain activity; yet, postural variation holds important implications for the acquisition and interpretation of neuroimaging data. Whereas participants in most behavioral and EEG experiments sit upright, many prominent brain imaging techniques (e.g., fMRI) require participants to lie supine. Here we demonstrate that physical comportment profoundly alters baseline brain activity as measured by magnetoencephalography (MEG)—an imaging modality that permits multipostural acquisition. We collected resting-state MEG data from 12 healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). Source-modeling analysis revealed a broadly distributed influence of posture on resting brain function. Sitting upright versus lying supine was associated with greater high-frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. Moreover, sitting upright and reclining postures correlated with dampened activity in prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The observed effects were large, with a mean Cohens d of 0.95 (SD = 0.23). In addition to neural activity, physiological parameters such as muscle tension and eye blinks may have contributed to these posture-dependent changes in brain signal. Regardless of the underlying mechanisms, however, the present results have important implications for the acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI or PET with EEG or MEG). More broadly, our findings indicate that generalizing results—from supine neuroimaging measurements to erect positions typical of ecological human behavior—would call for considering the influence that posture wields on brain dynamics.
American Psychologist | 2018
Robert T. Thibault; Amir Raz
We were pleased to read the constructive commentary (Micoulaud-Franchi & Fovet, 2018) on our original piece (Thibault & Raz, 2017). In this response, we build on the theoretical framework for studying neurofeedback that the commentators sketch out while pointing out potential caveats to adopting a neuroreductionist approach. (PsycINFO Database Record (c) 2018 APA, all rights reserved).