Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert te Poele is active.

Publication


Featured researches published by Robert te Poele.


Biochemical Pharmacology | 2001

Gene expression microarray analysis in cancer biology, pharmacology, and drug development: progress and potential

Paul A. Clarke; Robert te Poele; Richard Wooster; Paul Workman

With the imminent completion of the Human Genome Project, biomedical research is being revolutionised by the ability to carry out investigations on a genome wide scale. This is particularly important in cancer, a disease that is caused by accumulating abnormalities in the sequence and expression of a number of critical genes. Gene expression microarray technology is gaining increasingly widespread use as a means to determine the expression of potentially all human genes at the level of messenger RNA. In this commentary, we review developments in gene expression microarray technology and illustrate the progress and potential of the methodology in cancer biology, pharmacology, and drug development. Important applications include: (a) development of a more global understanding of the gene expression abnormalities that contribute to malignant progression; (b) discovery of new diagnostic and prognostic indicators and biomarkers of therapeutic response; (c) identification and validation of new molecular targets for drug development; (d) provision of an improved understanding of the molecular mode of action during lead identification and optimisation, including structure-activity relationships for on-target versus off-target effects; (e) prediction of potential side-effects during preclinical development and toxicology studies; (f) confirmation of a molecular mode of action during hypothesis-testing clinical trials; (g) identification of genes involved in conferring drug sensitivity and resistance; and (h) prediction of patients most likely to benefit from the drug and use in general pharmacogenomic studies. As a result of further technological improvements and decreasing costs, the use of microarrays will become an essential and potentially routine tool for cancer and biomedical research.


Cell Cycle | 2009

Molecular pharmacology of phosphatidylinositol 3-kinase inhibition in human glioma.

Sandrine Guillard; Paul A. Clarke; Robert te Poele; Zahra Mohri; Lynn Bjerke; Melanie Valenti; Florence I. Raynaud; Suzanne A. Eccles; Paul Workman

Gliomas are primary brain tumors with poor prognosis that exhibit frequent abnormalities in phosphatidylinositol 3-kinase (PI3 kinase) signaling. We investigated the molecular mechanism of action of the isoform-selective Class I PI3 kinase and mTOR inhibitor PI-103 in human glioma cells. The potent inhibitory effects of PI-103 on the PI3 kinase pathway were quantified. PI-103 and the mTOR inhibitor rapamycin both inhibited RPS6 phosphorylation but there were clear differences in the response of upstream components of the PI3 kinase pathway, such as phosphorylation of Thr308-AKT, that were inhibited by PI-103 but not rapamycin. Gene expression profiling identified altered expression of genes encoding regulators of the cell cycle and cholesterol metabolism, and genes modulated by insulin or IGF1 signaling, rapamycin treatment or nutrient starvation. PI-103 decreased expression of positive regulators of G1/S phase progression and increased expression of the negative cell cycle regulator p27kip1. A reversible PI-103-mediated G1 cell cycle arrest occurred without significant apoptosis, consistent with the altered gene expression detected. PI-103 induced vacuolation and processing of LC-3i to LC-3ii, which are features of an autophagic response. In contrast to PI-103, LY294002 and PI-387 induced apoptosis, indicative of likely off-target effects. PI-103 interacted synergistically or additively with cytotoxic agents used in the treatment of glioma, namely vincristine, BCNU and temozolomide. Compared to individual treatments, the combination of PI-103 with temozolomide significantly improved the response of U87MG human glioma xenografts. Our results support the therapeutic potential for PI3 kinase inhibitors with PI-103-like profile as therapeutic agents for the treatment of glioma.


Molecular Cancer Therapeutics | 2007

Mechanism of action of the Aurora kinase inhibitor CCT129202 and in vivo quantification of biological activity

Florence Chan; Chongbo Sun; Meg Perumal; Quang-Dé Nguyen; Vassilios Bavetsias; Edward McDonald; Vanessa Martins; Nicola E. Wilsher; Florence I. Raynaud; Melanie Valenti; Sue Eccles; Robert te Poele; Paul Workman; Eric O. Aboagye; Spiros Linardopoulos

The Aurora family of serine/threonine kinases is important for the regulation of centrosome maturation, chromosome segregation, and cytokinesis during mitosis. Overexpression of Aurora kinases in mammalian cells leads to genetic instability and transformation. Increased levels of Aurora kinases have also been linked to a broad range of human tumors. Here, we describe the properties of CCT129202, a representative of a structurally novel series of imidazopyridine small-molecule inhibitors of Aurora kinase activity. This compound showed high selectivity for the Aurora kinases over a panel of other kinases tested and inhibits proliferation in multiple cultured human tumor cell lines. CCT129202 causes the accumulation of human tumor cells with ≥4N DNA content, leading to apoptosis. CCT120202-treated human tumor cells showed a delay in mitosis, abrogation of nocodazole-induced mitotic arrest, and spindle defects. Growth of HCT116 xenografts in nude mice was inhibited after i.p. administration of CCT129202. We show that p21, the cyclin-dependent kinase inhibitor, is induced by CCT129202. Up-regulation of p21 by CCT129202 in HCT116 cells led to Rb hypophosphorylation and E2F inhibition, contributing to a decrease in thymidine kinase 1 transcription. This has facilitated the use of 3′-deoxy-3′[18F]fluorothymidine-positron emission tomography to measure noninvasively the biological activity of the Aurora kinase inhibitor CCT129202 in vivo. [Mol Cancer Ther 2007;6(12):3147–57]


Cell Cycle | 2007

The cyclin-dependent kinase inhibitor seliciclib (R-roscovitine; CYC202) decreases the expression of mitotic control genes and prevents entry into mitosis.

Steven Whittaker; Robert te Poele; Florence Chan; Spiros Linardopoulos; Michael I. Walton; Michelle D. Garrett; Paul Workman

The cyclin-dependent kinase (CDK) inhibitor seliciclib (R-roscovitine, CYC202) shows promising antitumor activity in preclinical models and is currently undergoing phase II clinical trials. Inhibition of the CDKs by seliciclib could contribute to cell cycle arrest and apoptosis seen with the drug. However, it is common for drugs to exert multiple effects on gene expression and biochemical pathways. To further our understanding of the molecular pharmacology of seliciclib, we employed cDNA microarrays to determine changes in gene expression profiles induced by the drug in HT29 human colon cancer cells. Concentrations of seliciclib were used that inhibited RB phosphorylation and cell proliferation. An increase in the mRNA expression for CJUN and EGR1 was confirmed by Western blotting, consistent with activation of the ERK1/2 MAPK pathway by seliciclib. Transcripts of key genes required for the progression through mitosis showed markedly reduced expression, including Aurora-A/B (AURK-A/B), Polo-like kinase (PLK), cyclin B2 (CCNB2), WEE1 and CDC25C. Reduced expression of these mitotic genes was also seen at the protein level. siRNA-mediated depletion of Aurora-A protein led to an arrest of cells in the G2/M phase, consistent with the effects of seliciclib treatment. Inhibition of mitotic entry following seliciclib treatment was indicated by a reduction of histone H3 phosphorylation, which is catalyzed by Aurora-B, and by decreased expression of mitotic markers, including phospho-protein phosphatase 1α. The results indicate a potential mechanism through which seliciclib prevents entry into mitosis. Gene expression profiling has generated hypotheses that led to an increase in our knowledge of the cellular effects of seliciclib and could provide potential pharmacodynamic or response biomarkers for use in animal models and clinical trials.


Clinical Cancer Research | 2012

AT13148 Is a Novel, Oral Multi-AGC Kinase Inhibitor with Potent Pharmacodynamic and Antitumor Activity

Timothy A. Yap; Mike I. Walton; Kyla Grimshaw; Robert te Poele; Paul D. Eve; Melanie Valenti; Alexis de Haven Brandon; Vanessa Martins; Anna Zetterlund; Simon P. Heaton; Kathrin Heinzmann; Paul S. Jones; Ruth Feltell; Matthias Reule; Steven John Woodhead; Thomas G. Davies; John Lyons; Florence I. Raynaud; Suzanne A. Eccles; Paul Workman; Neil Thomas Thompson; Michelle D. Garrett

Purpose: Deregulated phosphatidylinositol 3-kinase pathway signaling through AGC kinases including AKT, p70S6 kinase, PKA, SGK and Rho kinase is a key driver of multiple cancers. The simultaneous inhibition of multiple AGC kinases may increase antitumor activity and minimize clinical resistance compared with a single pathway component. Experimental Design: We investigated the detailed pharmacology and antitumor activity of the novel clinical drug candidate AT13148, an oral ATP-competitive multi-AGC kinase inhibitor. Gene expression microarray studies were undertaken to characterize the molecular mechanisms of action of AT13148. Results: AT13148 caused substantial blockade of AKT, p70S6K, PKA, ROCK, and SGK substrate phosphorylation and induced apoptosis in a concentration and time-dependent manner in cancer cells with clinically relevant genetic defects in vitro and in vivo. Antitumor efficacy in HER2-positive, PIK3CA-mutant BT474 breast, PTEN-deficient PC3 human prostate cancer, and PTEN-deficient MES-SA uterine tumor xenografts was shown. We show for the first time that induction of AKT phosphorylation at serine 473 by AT13148, as reported for other ATP-competitive inhibitors of AKT, is not a therapeutically relevant reactivation step. Gene expression studies showed that AT13148 has a predominant effect on apoptosis genes, whereas the selective AKT inhibitor CCT128930 modulates cell-cycle genes. Induction of upstream regulators including IRS2 and PIK3IP1 as a result of compensatory feedback loops was observed. Conclusions: The clinical candidate AT13148 is a novel oral multi-AGC kinase inhibitor with potent pharmacodynamic and antitumor activity, which shows a distinct mechanism of action from other AKT inhibitors. AT13148 will now be assessed in a first-in-human phase I trial. Clin Cancer Res; 18(14); 3912–23. ©2012 AACR.


PLOS ONE | 2012

Mechanism-Based Screen for G1/S Checkpoint Activators Identifies a Selective Activator of EIF2AK3/PERK Signalling

Simon R. Stockwell; Georgina Platt; S. Elaine Barrie; Georgia Zoumpoulidou; Robert te Poele; G. Wynne Aherne; Stuart Wilson; Peter Sheldrake; Edward McDonald; Mathilde Venet; Christelle Soudy; Frédéric Elustondo; Laurent Rigoreau; Julian Blagg; Paul Workman; Michelle D. Garrett; Sibylle Mittnacht

Human cancers often contain genetic alterations that disable G1/S checkpoint control and loss of this checkpoint is thought to critically contribute to cancer generation by permitting inappropriate proliferation and distorting fate-driven cell cycle exit. The identification of cell permeable small molecules that activate the G1/S checkpoint may therefore represent a broadly applicable and clinically effective strategy for the treatment of cancer. Here we describe the identification of several novel small molecules that trigger G1/S checkpoint activation and characterise the mechanism of action for one, CCT020312, in detail. Transcriptional profiling by cDNA microarray combined with reverse genetics revealed phosphorylation of the eukaryotic initiation factor 2-alpha (EIF2A) through the eukaryotic translation initiation factor 2-alpha kinase 3 (EIF2AK3/PERK) as the mechanism of action of this compound. While EIF2AK3/PERK activation classically follows endoplasmic reticulum (ER) stress signalling that sets off a range of different cellular responses, CCT020312 does not trigger these other cellular responses but instead selectively elicits EIF2AK3/PERK signalling. Phosphorylation of EIF2A by EIF2A kinases is a known means to block protein translation and hence restriction point transit in G1, but further supports apoptosis in specific contexts. Significantly, EIF2AK3/PERK signalling has previously been linked to the resistance of cancer cells to multiple anticancer chemotherapeutic agents, including drugs that target the ubiquitin/proteasome pathway and taxanes. Consistent with such findings CCT020312 sensitizes cancer cells with defective taxane-induced EIF2A phosphorylation to paclitaxel treatment. Our work therefore identifies CCT020312 as a novel small molecule chemical tool for the selective activation of EIF2A-mediated translation control with utility for proof-of-concept applications in EIF2A-centered therapeutic approaches, and as a chemical starting point for pathway selective agent development. We demonstrate that consistent with its mode of action CCT020312 is capable of delivering potent, and EIF2AK3 selective, proliferation control and can act as a sensitizer to chemotherapy-associated stresses as elicited by taxanes.


Cancer Research | 2012

Histone deacetylase inhibition increases levels of choline kinase α and phosphocholine facilitating noninvasive imaging in human cancers.

Mounia Beloueche-Babari; Vaitha Arunan; Helen Troy; Robert te Poele; Anne-Christine Wong Te Fong; L. Elizabeth Jackson; Geoffrey S. Payne; John R. Griffiths; Ian Judson; Paul Workman; Martin O. Leach; Yuen-Li Chung

Histone deacetylase (HDAC) inhibitors are currently approved for cutaneous T-cell lymphoma and are in mid-late stage trials for other cancers. The HDAC inhibitors LAQ824 and SAHA increase phosphocholine (PC) levels in human colon cancer cells and tumor xenografts as observed by magnetic resonance spectroscopy (MRS). In this study, we show that belinostat, an HDAC inhibitor with an alternative chemical scaffold, also caused a rise in cellular PC content that was detectable by (1)H and (31)P MRS in prostate and colon carcinoma cells. In addition, (1)H MRS showed an increase in branched chain amino acid and alanine concentrations. (13)C-choline labeling indicated that the rise in PC resulted from increased de novo synthesis and correlated with an induction of choline kinase α expression. Furthermore, metabolic labeling experiments with (13)C-glucose showed that differential glucose routing favored alanine formation at the expense of lactate production. Additional analysis revealed increases in the choline/water and phosphomonoester (including PC)/total phosphate ratios in vivo. Together, our findings provide mechanistic insights into the impact of HDAC inhibition on cancer cell metabolism and highlight PC as a candidate noninvasive imaging biomarker for monitoring the action of HDAC inhibitors.


Journal of Medicinal Chemistry | 2017

Discovery of a Chemical Probe Bisamide (CCT251236): An Orally Bioavailable Efficacious Pirin Ligand from a Heat Shock Transcription Factor 1 (HSF1) Phenotypic Screen

Matthew D. Cheeseman; Nicola E. A. Chessum; Carl S. Rye; A. Elisa Pasqua; Michael Tucker; Birgit Wilding; Lindsay E. Evans; Susan Lepri; Meirion Richards; Swee Y. Sharp; Salyha Ali; Martin G. Rowlands; Lisa O’Fee; Asadh Miah; Angela Hayes; Alan T. Henley; Marissa V. Powers; Robert te Poele; Emmanuel de Billy; Loredana Pellegrino; Florence I. Raynaud; Rosemary Burke; Rob L. M. van Montfort; Suzanne A. Eccles; Paul Workman; Keith Jones

Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.


Molecular Oncology | 2018

Molecular profiling and combinatorial activity of CCT068127: a potent CDK2 and CDK9 inhibitor.

Steven Whittaker; Clare Barlow; Matthew P. Martin; Caterina Mancusi; Steve Wagner; Annette Self; Elaine Barrie; Robert te Poele; Swee Y. Sharp; Nathan Brown; Stuart Wilson; Wayne Jackson; Peter Fischer; Paul A. Clarke; Michael I. Walton; Edward McDonald; Julian Blagg; Martin Noble; Michelle D. Garrett; Paul Workman

Deregulation of the cyclin‐dependent kinases (CDKs) has been implicated in the pathogenesis of multiple cancer types. Consequently, CDKs have garnered intense interest as therapeutic targets for the treatment of cancer. We describe herein the molecular and cellular effects of CCT068127, a novel inhibitor of CDK2 and CDK9. Optimized from the purine template of seliciclib, CCT068127 exhibits greater potency and selectivity against purified CDK2 and CDK9 and superior antiproliferative activity against human colon cancer and melanoma cell lines. X‐ray crystallography studies reveal that hydrogen bonding with the DFG motif of CDK2 is the likely mechanism of greater enzymatic potency. Commensurate with inhibition of CDK activity, CCT068127 treatment results in decreased retinoblastoma protein (RB) phosphorylation, reduced phosphorylation of RNA polymerase II, and induction of cell cycle arrest and apoptosis. The transcriptional signature of CCT068127 shows greatest similarity to other small‐molecule CDK and also HDAC inhibitors. CCT068127 caused a dramatic loss in expression of DUSP6 phosphatase, alongside elevated ERK phosphorylation and activation of MAPK pathway target genes. MCL1 protein levels are rapidly decreased by CCT068127 treatment and this associates with synergistic antiproliferative activity after combined treatment with CCT068127 and ABT263, a BCL2 family inhibitor. These findings support the rational combination of this series of CDK2/9 inhibitors and BCL2 family inhibitors for the treatment of human cancer.


Cancer Research | 2017

Abstract LB-304: Discovery of chemical probe CCT251236: An orally bioavailable efficacious pirin ligand from an HSF1 phenotypic screen

Matthew D. Cheeseman; Nicola E. A. Chessum; Carl S. Rye; Elisa Pasqua; Michael Tucker; Birgit Wilding; Lindsay E. Evans; Susan Lepri; Meirion Richards; Swee Y. Sharp; Salyha Ali; Martin G. Rowlands; Lisa O'Fee; Asadh Miah; Angela Hayes; Alan T. Henley; Marissa V. Powers; Robert te Poele; Emmanuel de Billy; Loredana Pellegrino; Florence I. Raynaud; Rosemary Burke; Rob L. M. van Montfort; Suzanne A. Eccles; Keith Jones; Paul Workman

Heat shock factor 1 (HSF1) was originally identified as a master regulator of the classical ‘cytoprotective’ heat shock response. However, a large body of evidence has now verified the importance of HSF1 to tumorigenesis and cancer progression. HSF1 is activated by various elements of the cancer state, reprogramming the transcriptome in a way that is overlapping with, but distinct from, the canonical heat-shock response. Also, there is a strong correlation between the expression of activated HSF1 in tumors and adverse clinical outcomes. This evidence indicates that the inhibition of HSF1-mediated transcription could be a viable strategy in cancer treatment. Inhibiting the HSF1 stress pathway represents an attempt at targeting non-oncogene addiction and proteotoxic stress, which has been proposed to be advantageous. However, HSF1 is a ligandless transcription factor and is unlikely to be amenable to standard drug discovery strategies and direct inhibition with small molecules. Therefore, we proposed that inhibitors of HSF1-mediated transcription, which antagonize the HSF1 pathway but without necessarily binding directly to HSF1, could be discovered and developed via a cell-based phenotypic screen. We carried out a high throughput Arrayscan assay of 200,000 compounds to measure the inhibition of HSF1-mediated HSP72 expression stimulated by pre-treatment with an HSP90 inhibitor. We identified a singleton hit with a bisamide core, CCT245232. This compound showed potent growth inhibition in a range of human cancer cell lines but had poor physicochemical properties leading to an unacceptable pharmacokinetic profile. Improvement of the physicochemical properties of CCT245232 whilst maintaining potency versus our cell-based assays led to the orally bioavailable tool compound CCT251236. This compound shows potent growth inhibition (GI50 values in low nanomolar range) of human ovarian cancer cell lines in vitro and good efficacy against human ovarian cancer xenografts in nude mice in vivo. We applied chemo-proteomic strategies to identify the molecular target using a probe based on CCT251236 and discovered pirin as a high affinity molecular target. Binding of CCT251236 to recombinant pirin was confirmed in biophysical assays. CCT251236 recapitulates the reported anti-migratory phenotype for a pirin ligand although binding to pirin alone does not explain the cellular phenotype observed with our chemical tool. We are currently using CCT251236 as a chemical probe while further optimizing its properties to identify a clinical candidate. Citation Format: Matthew D. Cheeseman, Nicola E. Chessum, Carl S. Rye, Elisa A. Pasqua, Michael J. Tucker, Birgit Wilding, Lindsay E. Evans, Susan Lepri, Meirion Richards, Swee Y. Sharp, Salyha Ali, Martin Rowlands, Lisa O9Fee, Asadh Miah, Angela Hayes, Alan T. Henley, Marissa Powers, Robert te Poele, Emmanuel De Billy, Loredana Pellegrino, Florence Raynaud, Rosemary Burke, Robert L. van Montfort, Suzanne A. Eccles, Keith Jones, Paul Workman. Discovery of chemical probe CCT251236: An orally bioavailable efficacious pirin ligand from an HSF1 phenotypic screen [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr LB-304. doi:10.1158/1538-7445.AM2017-LB-304

Collaboration


Dive into the Robert te Poele's collaboration.

Top Co-Authors

Avatar

Paul Workman

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Florence I. Raynaud

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Paul A. Clarke

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Suzanne A. Eccles

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Swee Y. Sharp

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Emmanuel de Billy

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Keith Jones

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Melanie Valenti

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Michelle D. Garrett

Institute of Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Nicola E. A. Chessum

Institute of Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge