Robert W. Cho
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robert W. Cho.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Piero Dalerba; Scott J. Dylla; In Kyung Park; Rui Liu; Xinhao Wang; Robert W. Cho; Timothy Hoey; Austin L. Gurney; Emina Huang; Diane M. Simeone; Andrew A. Shelton; Giorgio Parmiani; Chiara Castelli; Michael F. Clarke
Recent observations indicate that, in several types of human cancer, only a phenotypic subset of cancer cells within each tumor is capable of initiating tumor growth. This functional subset of cancer cells is operationally defined as the “cancer stem cell” (CSC) subset. Here we developed a CSC model for the study of human colorectal cancer (CRC). Solid CRC tissues, either primary tissues collected from surgical specimens or xenografts established in nonobese diabetic/severe combined immunodeficient (NOD/SCID) mice, were disaggregated into single-cell suspensions and analyzed by flow cytometry. Surface markers that displayed intratumor heterogeneous expression among epithelial cancer cells were selected for cell sorting and tumorigenicity experiments. Individual phenotypic cancer cell subsets were purified, and their tumor-initiating properties were investigated by injection in NOD/SCID mice. Our observations indicate that, in six of six human CRC tested, the ability to engraft in vivo in immunodeficient mice was restricted to a minority subpopulation of epithelial cell adhesion molecule (EpCAM)high/CD44+ epithelial cells. Tumors originated from EpCAMhigh/CD44+ cells maintained a differentiated phenotype and reproduced the full morphologic and phenotypic heterogeneity of their parental lesions. Analysis of the surface molecule repertoire of EpCAMhigh/CD44+ cells led to the identification of CD166 as an additional differentially expressed marker, useful for CSC isolation in three of three CRC tested. These results validate the stem cell working model in human CRC and provide a highly robust surface marker profile for CRC stem cell isolation.
Nature | 2009
Maximilian Diehn; Robert W. Cho; Neethan Lobo; Tomer Kalisky; Mary Jo Dorie; Angela N. Kulp; Dalong Qian; Jessica Lam; Laurie E. Ailles; Manzhi Wong; Benzion Joshua; Michael Kaplan; Irene Wapnir; Frederick M. Dirbas; George Somlo; Carlos Garberoglio; Benjamin Paz; Jeannie Shen; Sean K. Lau; Stephen R. Quake; J. Martin Brown; Irving L. Weissman; Michael F. Clarke
The metabolism of oxygen, although central to life, produces reactive oxygen species (ROS) that have been implicated in processes as diverse as cancer, cardiovascular disease and ageing. It has recently been shown that central nervous system stem cells and haematopoietic stem cells and early progenitors contain lower levels of ROS than their more mature progeny, and that these differences are critical for maintaining stem cell function. We proposed that epithelial tissue stem cells and their cancer stem cell (CSC) counterparts may also share this property. Here we show that normal mammary epithelial stem cells contain lower concentrations of ROS than their more mature progeny cells. Notably, subsets of CSCs in some human and murine breast tumours contain lower ROS levels than corresponding non-tumorigenic cells (NTCs). Consistent with ROS being critical mediators of ionizing-radiation-induced cell killing, CSCs in these tumours develop less DNA damage and are preferentially spared after irradiation compared to NTCs. Lower ROS levels in CSCs are associated with increased expression of free radical scavenging systems. Pharmacological depletion of ROS scavengers in CSCs markedly decreases their clonogenicity and results in radiosensitization. These results indicate that, similar to normal tissue stem cells, subsets of CSCs in some tumours contain lower ROS levels and enhanced ROS defences compared to their non-tumorigenic progeny, which may contribute to tumour radioresistance.
Cell | 2009
Yohei Shimono; Maider Zabala; Robert W. Cho; Neethan Lobo; Piero Dalerba; Dalong Qian; Maximilian Diehn; Huiping Liu; Sarita Panula; Eric Chiao; Frederick M. Dirbas; George Somlo; Renee A. Reijo Pera; Kaiqin Lao; Michael F. Clarke
Human breast tumors contain a breast cancer stem cell (BCSC) population with properties reminiscent of normal stem cells. We found 37 microRNAs that were differentially expressed between human BCSCs and nontumorigenic cancer cells. Three clusters, miR-200c-141, miR-200b-200a-429, and miR-183-96-182 were downregulated in human BCSCs, normal human and murine mammary stem/progenitor cells, and embryonal carcinoma cells. Expression of BMI1, a known regulator of stem cell self-renewal, was modulated by miR-200c. miR-200c inhibited the clonal expansion of breast cancer cells and suppressed the growth of embryonal carcinoma cells in vitro. Most importantly, miR-200c strongly suppressed the ability of normal mammary stem cells to form mammary ducts and tumor formation driven by human BCSCs in vivo. The coordinated downregulation of three microRNA clusters and the similar functional regulation of clonal expansion by miR-200c provide a molecular link that connects BCSCs with normal stem cells.
Stem Cells | 2008
Robert W. Cho; Xinhao Wang; Maximilian Diehn; Kerby Shedden; Grace Y. Chen; Gavin Sherlock; Austin L. Gurney; John Lewicki; Michael F. Clarke
In human breast cancers, a phenotypically distinct minority population of tumorigenic (TG) cancer cells (sometimes referred to as cancer stem cells) drives tumor growth when transplanted into immunodeficient mice. Our objective was to identify a mouse model of breast cancer stem cells that could have relevance to the study of human breast cancer. To do so, we used breast tumors of the mouse mammary tumor virus (MMTV)‐Wnt‐1 mice. MMTV‐Wnt‐1 breast tumors were harvested, dissociated into single‐cell suspensions, and sorted by flow cytometry on Thy1, CD24, and CD45. Sorted cells were then injected into recipient background FVB/NJ female syngeneic mice. In six of seven tumors examined, Thy1+CD24+ cancer cells, which constituted approximately 1%–4% of tumor cells, were highly enriched for cells capable of regenerating new tumors compared with cells of the tumor that did not fit this profile (“not‐Thy1+CD24+”). Resultant tumors had a phenotypic diversity similar to that of the original tumor and behaved in a similar manner when passaged. Microarray analysis comparing Thy1+CD24+ tumor cells to not‐Thy1+CD24+ cells identified a list of differentially expressed genes. Orthologs of these differentially expressed genes predicted survival of human breast cancer patients from two different study groups. These studies suggest that there is a cancer stem cell compartment in the MMTV‐Wnt‐1 murine breast tumor and that there is a clinical utility of this model for the study of cancer stem cells.
Current Opinion in Genetics & Development | 2008
Robert W. Cho; Michael F. Clarke
The theory of cancer stem cells states that a subset of cancer cells within a tumor has the ability to self-renew and differentiate. Only those cells within a tumor that have these two properties are called cancer stem cells. This concept was first demonstrated in the study of leukemia where only cells with specific surface antigen profiles were able to cause leukemia when engrafted into immunodeficient mice. In recent years solid tumors were studied utilizing similar techniques in mice. Human tumors where evidence of cancer stem cells has been published include tumors of the breast, brain, pancreas, head and neck, and colon. If this difference in tumorigenicity of cancer cells also occurs in patients, then the ability to enrich for cancer stem cells lays an important groundwork for future studies where mechanisms involved in cancer stem cells can now be investigated.
Seminars in Radiation Oncology | 2009
Maximilian Diehn; Robert W. Cho; Michael F. Clarke
A growing body of evidence indicates that subpopulations of cancer stem cells (CSCs) drive and maintain many types of human malignancies. These findings have important implications for the development and evaluation of oncologic therapies and present opportunities for potential gains in patient outcome. The existence of CSCs mandates careful analysis and comparison of normal tissue stem cells and CSCs to identify differences between the two cell types. The development of CSC-targeted treatments will face a number of potential hurdles, including normal stem cell toxicity and the acquisition of treatment resistance, which must be considered in order to maximize the chance that such therapies will be successful.
Journal of Neuro-ophthalmology | 2004
Juan J. Chan Lau; Jonathan D. Trobe; Robert E. Ruiz; Robert W. Cho; Daniel S. Wechsler; Gaurang V. Shah; Stephen S. Gebarski
A 2-year-old boy with blindness as an isolated symptom was found to have no light perception binocularly because of compression of both optic nerves by a neuroblastoma infiltrating the walls of the optic canals and medial sphenoid bone. Imaging disclosed a primary tumor near the kidney and multiple osseous metastases. Although neuroblastoma commonly causes blindness by metastasis to the orbit, it rarely causes bilateral blindness from intracranial compression of the optic nerves. This is the first report of bilateral blindness as the presenting feature.
Annual Review of Medicine | 2007
Piero Dalerba; Robert W. Cho; Michael F. Clarke
Archive | 2006
Michael F. Clarke; Xinhao Wang; Robert W. Cho
International Journal of Radiation Oncology Biology Physics | 2007
M. Diehn; Robert W. Cho; Mary Jo Dorie; A. Kulp; Irving L. Weissman; Martin Brown; Michael F. Clarke