Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robert W. Dunstan is active.

Publication


Featured researches published by Robert W. Dunstan.


Toxicologic Pathology | 2007

An Immunohistochemical Approach to Differentiate Hepatic Lipidosis from Hepatic Phospholipidosis in Rats

Leslie Obert; Gregg Sobocinski; Walter F. Bobrowski; Alan L. Metz; Mark D. Rolsma; Douglas M. Altrogge; Robert W. Dunstan

Hepatocellular vacuolation can be a diagnostic challenge since cytoplasmic accumulations of various substances (lipid, water, phospholipids, glycogen, and plasma) can have a similar morphology. Cytoplasmic accumulation of phospholipids following administration of cationic amphiphilic drugs (CAD) can be particularly difficult to differentiate from nonphosphorylated lipid accumulations at the light microscopic level. Histochemical methods (Sudan Black, Oil Red-O, Nile Blue, etc.) can be used to identify both nonphosphorylated and/or phosphorylated lipid accumulations, but these techniques require non-paraffin-embedded tissue and are only moderately sensitive. Thus, electron microscopy is often utilized to achieve a definitive diagnosis based upon the characteristic morphologic features of phospholipid accumulations; however, this is a low throughput and labor intense procedure. In this report, we describe the use of immunohistochemical staining for LAMP-2 (a lysosome-associated protein) and adipophilin (a protein that forms the membrane around non-lysosomal lipid droplets) to differentiate phospholipidosis and lipidosis, respectively in the livers of rats. This staining procedure can be performed on formalin-fixed paraffin embedded tissues, is more sensitive than histochemistry, and easier to perform than ultrastructural evaluation.


Toxicologic Pathology | 2011

The Use of Immunohistochemistry for Biomarker Assessment—Can It Compete with Other Technologies?

Robert W. Dunstan; Keith A. Wharton; Catherine Quigley; Amanda Lowe

A morphology-based assay such as immunohistochemistry (IHC) should be a highly effective means to define the expression of a target molecule of interest, especially if the target is a protein. However, over the past decade, IHC as a platform for biomarkers has been challenged by more quantitative molecular assays with reference standards but that lack morphologic context. For IHC to be considered a “top-tier” biomarker assay, it must provide truly quantitative data on par with non-morphologic assays, which means it needs to be run with reference standards. However, creating such standards for IHC will require optimizing all aspects of tissue collection, fixation, section thickness, morphologic criteria for assessment, staining processes, digitization of images, and image analysis. This will also require anatomic pathology to evolve from a discipline that is descriptive to one that is quantitative. A major step in this transformation will be replacing traditional ocular microscopes with computer monitors and whole slide images, for without digitization, there can be no accurate quantitation; without quantitation, there can be no standardization; and without standardization, the value of morphology-based IHC assays will not be realized.


Toxicologic Pathology | 2007

Human Skin in Organ Culture and Human Skin Cells (Keratinocytes and Fibroblasts) in Monolayer Culture for Assessment of Chemically Induced Skin Damage

James Varani; Patricia Perone; Diana M. Spahlinger; Lisa M. Singer; Kelly L. Diegel; Walter F. Bobrowski; Robert W. Dunstan

Human skin cells (epidermal keratinocytes and dermal fibroblasts) in monolayer culture and human skin in organ culture were exposed to agents that are known to produce irritation (redness, dryness, edema and scaly crusts) when applied topically to skin. Among the agents used were three well accepted contact irritants (i.e., all-trans retinoic acid [RA], sodium lauryl sulfate [SLS] and benzalkonium chloride) as well as the corrosive organic mercury compound, aminophenyl mercuric acetate (APMA), and 5 contact sensitizers (oxazolone, nickel sulfate, eugenol, isoeugenol and ethylene glycol dimethacrylate [EGDM]). As a group, the contact irritants (including the corrosive mercuric compound) were cytotoxic for keratinocytes and fibroblasts and suppressed growth at lower concentrations than the contact sensitizers. The contact irritants also produced histological changes (hyperplasia, incomplete keratinization, loss of the granular layer, acantholysis and necrosis) in organ-cultured skin at dose levels at which the contact sensitizers appeared to be inert. Finally, the profile of secreted molecules from organ-cultured skin was different in the presence of contact irritants versus contact sensitizers. Taken together, these data suggest that the use of organ-cultured skin in conjunction with cells derived from the skin in monolayer culture may provide an initial approach to screening agents for deleterious changes in skin.


Experimental and Molecular Pathology | 2008

Investigating fixative-induced changes in RNA quality and utility by microarray analysis.

Melissa L. Cox; Susan Eddy; Zachary S. Stewart; Maggi R. Kennel; Michael Z. Man; Joseph Paulauskis; Robert W. Dunstan

Described herein is a detailed analysis of the impact of three fixatives (10% neutral buffered formalin, modified methacarn and 70% ethanol) on RNA quality and utility using microarray analysis compared to OCT-embedded and flash frozen tissue. From rat livers fixed and stored in paraffin blocks for 1 month or 1 year, RNA was isolated and applied to rat whole genome microarrays. At both time points, RNA isolated from OCT-embedded tissue lost up to 5% of the information contained in snap frozen control liver. Of the fixatives used, modified methacarn was associated with the smallest loss of RNA information content (approximately 10%), while liver fixed in 70% ethanol and 10% neutral buffered formalin lost roughly 25% and 80%, respectively. We conclude that when optimum morphology is required for techniques such as laser microdissection, modified methacarn is the fixative least harmful to nucleic acids of the three tested in this study. In contrast, using traditional isolation techniques, RNA derived from tissue fixed in 10% NBF will not give reliable results on microarray studies, and should be reserved for techniques less affected by the fragmentation and modification of the template RNA, such as quantitative RT-PCR.


Toxicologic Pathology | 2008

Characterization of Age- and Gender-related Changes in the Spleen and Thymus from Control Cynomolgus Macaques Used in Toxicity Studies:

Melanie S. Spoor; Zaher A. Radi; Robert W. Dunstan

Age- and gender-related lymphoid tissue variability in control male and female monkeys of various ages (under three years; three to six years; seven to fifteen years) was characterized. Spleen and thymus organ weights, organ-to-body and organ-to-brain ratios, morphology by light microscopy, and B- and T-cell immunohistochemistry (IHC) were evaluated. Splenic weights and ratios were not significantly different between various age groups or genders, except males and females in the three-to-six-years age group, who exhibited statistically significant changes from the under-three-years age group. No differences in the number of primary follicles, secondary follicles with germinal centers, B-cell follicles, and periarterial lymphoid sheath were seen between age groups or genders, and no trends were noted in the spleen. By IHC, no differences were observed in B- and T-cell splenic densities. Several age- and gender-related changes in weights and ratios were noted in the thymus. The thymus had a trend toward increased interlobular fat infiltration with increasing age in both males and females. Thymic delineation of the cortex and medulla was significantly decreased in the seven-to-fifteen-years age group for males only. The cortex-to-medulla ratio was significantly lower only in males in the seven-to-fifteen-years age group. B- and T-cell cellular density did not change across various ages.


In Vitro Cellular & Developmental Biology – Animal | 2008

Establishment and characteristics of Gottingen minipig skin in organ culture and monolayer cell culture: relevance to drug safety testing

Michael K. Dame; Diana M. Spahlinger; Marissa DaSilva; Patricia Perone; Robert W. Dunstan; James Varani

Skin from Gottingen minipigs was used as a source of tissue for organ and cell culture and compared to human skin for growth conditions and sensitivity to irritants. Optimal organ culture conditions were determined, based on the preservation of the histological structure. These included serum-free, growth factor-free conditions with a calcium concentration of 1.5mM. Formulations in which the calcium concentration were low (0.075–0.15mM) failed to support tissue viability (even in the presence of dialyzed serum). Epidermal keratinocytes were grown from tissue explants and as single cells from enzyme-disrupted tissue. Optimal keratinocyte growth was achieved using a serum-free, growth factor-supplemented culture medium with a calcium concentration of 0.15mM. Fibroblasts were optimally grown from explant cultures using a medium with 1.5mM calcium and 10% fetal bovine serum. The conditions that were optimal for maintenance of intact pig skin, as well as for the isolated cells, are the same conditions that have been shown previously to be optimal for intact human skin and skin cells. In additional studies, pig skin keratinocytes and fibroblasts were exposed to a panel of contact irritants and contact sensitizers. Using growth inhibition as the response, the median effective dose values with each agent were very similar to the values previously determined for human epidermal keratinocytes and human dermal fibroblasts. Taken together, these data suggest that the skin from the Gottingen minipig can be used as a surrogate for human skin in ex vivo skin safety studies.


Toxicologic Pathology | 2008

Cutaneous Lesions in the Rat Following Administration of an Irreversible Inhibitor of erbB Receptors, Including the Epidermal Growth Factor Receptor

Alan P. Brown; Robert W. Dunstan; Cynthia L. Courtney; Kay A. Criswell; Michael Graziano

CI-1033 (canertinib) is an irreversible inhibitor of the erbB family of transmembrane tyrosine kinase receptors, including the epidermal growth factor (EGF) receptor. Various inhibitors of the EGF receptor, including CI-1033, have resulted in cutaneous toxicity in humans as a common adverse event. In a chronic toxicity study in rats, CI-1033 produced cutaneous lesions with morphologic characteristics similar to that reported in man. Here the authors describe in detail the dermal changes observed, along with other noteworthy findings of that study. Male and female Wistar rats (15/sex/group) were administered CI-1033 for 27 weeks at 2.5, 5, or 10 mg/kg (15, 30, or 60 mg/m2, respectively) by gavage. Control animals (15/sex) received vehicle alone (aqueous 0.5% methylcellulose) in a dose volume of 5 mL/kg. Six animals/sex/dose were included for toxicokinetic evaluations. Skin lesions were the primary drug-related toxicity and occurred at ≥2.5 mg/kg in a dose-dependent fashion. The major gross lesions were papules that evolved into crusts and scales that were first observed in weeks 1 and 3, respectively. Alopecia developed in conjunction with the papular eruptions. Skin changes were most pronounced in females, possibly due to higher drug levels. In week 13, CI-1033 plasma AUC(0–24) values were 527 to 1980 ng·h/mL in males and 844 to 2920 ng·h/mL in females at 2.5 to 10 mg/kg. Microscopic changes could be described as 3 patterns that affected the tail and body (haired skin). Pattern 1 consisted of epidermal changes that started as a superficial, perivascular spongiotic dermatitis with evolving epidermal hyperplasia, scale-crusts, and areas of ulceration. Areas of hyperplasia on the tail were often associated with the development of new hair follicles. Pattern 2 was characterized by a suppurative to pyogranulomatous infundibular folliculitis. Pattern 3 consisted of abnormally oriented hair follicles with malformed hair shafts that were associated with a deeper (isthmic) folliculitis; this correlated with alopecia. Elevations in bone marrow myeloid counts correlated with a peripheral leukocytosis, consistent with inflammatory changes in the dermis. In addition, hepatic cholestasis and epithelial atrophy in the gastrointestinal tract and vagina occurred at ≥2.5 mg/kg. In conclusion, CI-1033 produced cutaneous lesions involving the epidermis and hair follicle, and the morphologic characteristics were similar to that reported in clinical studies with various inhibitors of the EGF receptor. These changes are consistent with pharmacologic inhibition of the EGF receptor in these tissues and demonstrate that the rat can serve as an animal model for investigating the mechanisms for this toxicity.


Experimental Dermatology | 2005

Preservation of phenotype in an organotypic cell culture model of a recessive keratinization defect of Norfolk terrier dogs.

K.F. Barnhart; Kelly M. Credille; Andy Ambrus; Robert W. Dunstan

Abstract:  The purpose of this study is to reproduce in vitro a recessive keratinization defect of Norfolk terrier dogs characterized by a lack of keratin 10 (K10) production. Keratinocytes from skin biopsy samples of four normal dogs and two affected dogs were cultured organotypically with growth factor‐supplemented media in order to stimulate cornification. The cultured epidermis from the normal dogs closely resembled the normal epidermis in vivo and cornified. The cultured epidermis from the affected dogs displayed many phenotypic alterations identified in skin biopsies from dogs with this heritable defect. Immunohistochemistry and immunoblotting showed a marked decrease in K10 from the cultures of the affected keratinocytes, compared to that in K10 from the cultures of the normal keratinocytes. Real‐time reverse transcription polymerase chain reaction quantitation showed a 31‐fold decrease in K10, a 1.75‐fold increase in K1 and a 136‐fold increase in K2e between the affected and the normal epidermis. Organotypic keratinocytes showed a 241‐fold decrease in K10, a 31‐fold decrease in K1 and a 1467‐fold decrease in K2e between the affected and normal cultures. Although in vitro keratin expression did not precisely simulate in vivo, the morphology of the normal and the affected epidermis was largely preserved; thus, this culture system may provide an alternative to in vivo investigations for cutaneous research involving cornification.


Cytometry Part A | 2007

A practical method to determine the amount of tissue to analyze using laser scanning cytometry

John A. Wijsman; Leslie Obert; Jerome Paulissen; Rosario Garrido; Katherine A. Toy; Robert W. Dunstan

Laser scanning cytometry (LSC) is a new technology similar to flow cytometry but generates data from analysis of successive microscopic fields. Unlike its use in other applications, LSC‐generated data are not random when used for tissue sections, but are dependent on the microanatomy of the tissue and the distribution and expression of the protein under investigation. For valid LSC analysis, the data generated requires the evaluation of a sufficient tissue area to ensure an accurate representation of expression within the tissue of interest.


Toxicologic Pathology | 2017

Meeting Report: Tissue-based Image Analysis

Chandra Saravanan; Vanessa Schumacher; Danielle L. Brown; Robert W. Dunstan; Jean-Rene Galarneau; Marielle Odin; Sasmita Mishra

Quantitative image analysis (IA) is a rapidly evolving area of digital pathology. Although not a new concept, the quantification of histological features on photomicrographs used to be cumbersome, resource-intensive, and limited to specialists and specialized laboratories. Recent technological advances like highly efficient automated whole slide digitizer (scanner) systems, innovative IA platforms, and the emergence of pathologist-friendly image annotation and analysis systems mean that quantification of features on histological digital images will become increasingly prominent in pathologists’ daily professional lives. The added value of quantitative IA in pathology includes confirmation of equivocal findings noted by a pathologist, increasing the sensitivity of feature detection, quantification of signal intensity, and improving efficiency. There is no denying that quantitative IA is part of the future of pathology; however, there are also several potential pitfalls when trying to estimate volumetric features from limited 2-dimensional sections. This continuing education session on quantitative IA offered a broad overview of the field; a hands-on toxicologic pathologist experience with IA principles, tools, and workflows; a discussion on how to apply basic stereology principles in order to minimize bias in IA; and finally, a reflection on the future of IA in the toxicologic pathology field.

Collaboration


Dive into the Robert W. Dunstan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge