Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where William N. Washburn is active.

Publication


Featured researches published by William N. Washburn.


Journal of Medicinal Chemistry | 2008

Discovery of Dapagliflozin: A Potent, Selective Renal Sodium-Dependent Glucose Cotransporter 2 (SGLT2) Inhibitor for the Treatment of Type 2 Diabetes

Wei Meng; Bruce A. Ellsworth; Alexandra A. Nirschl; Peggy J. McCann; Manorama Patel; Ravindar N Girotra; Gang Wu; Philip M. Sher; Eamonn P. Morrison; Scott A. Biller; Robert Zahler; Prashant P. Deshpande; Annie Pullockaran; Deborah Hagan; Nathan Morgan; Joseph R. Taylor; Mary T. Obermeier; William G. Humphreys; Ashish Khanna; Lorell Discenza; James G. Robertson; Aiying Wang; Songping Han; John R. Wetterau; Evan B. Janovitz; Oliver P. Flint; Jean M. Whaley; William N. Washburn

The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.


Diabetes | 2008

Dapagliflozin, a selective SGLT2 inhibitor, improves glucose homeostasis in normal and diabetic rats

Songping Han; Deborah Hagan; Joseph R. Taylor; Li Xin; Wei Meng; Scott A. Biller; John R. Wetterau; William N. Washburn; Jean M. Whaley

OBJECTIVE—The inhibition of gut and renal sodium-glucose cotransporters (SGLTs) has been proposed as a novel therapeutic approach to the treatment of diabetes. We have identified dapagliflozin as a potent and selective inhibitor of the renal sodium-glucose cotransporter SGLT2 in vitro and characterized its in vitro and in vivo pharmacology. RESEARCH DESIGN AND METHODS—Cell-based assays measuring glucose analog uptake were used to assess dapagliflozins ability to inhibit sodium-dependent and facilitative glucose transport activity. Acute and multi-dose studies in normal and diabetic rats were performed to assess the ability of dapagliflozin to improve fed and fasting plasma glucose levels. A hyperinsulinemic-euglycemic clamp study was performed to assess the ability of dapagliflozin to improve glucose utilization after multi-dose treatment. RESULTS—Dapagliflozin potently and selectively inhibited human SGLT2 versus human SGLT1, the major cotransporter of glucose in the gut, and did not significantly inhibit facilitative glucose transport in human adipocytes. In vivo, dapagliflozin acutely induced renal glucose excretion in normal and diabetic rats, improved glucose tolerance in normal rats, and reduced hyperglycemia in Zucker diabetic fatty (ZDF) rats after single oral doses ranging from 0.1 to 1.0 mg/kg. Once-daily dapagliflozin treatment over 2 weeks significantly lowered fasting and fed glucose levels at doses ranging from 0.1 to 1.0 mg/kg and resulted in a significant increase in glucose utilization rate accompanied by a significant reduction in glucose production. CONCLUSIONS—These data suggest that dapagliflozin has the potential to be an efficacious treatment for type 2 diabetes.


Drug Metabolism and Disposition | 2010

In vitro characterization and pharmacokinetics of dapagliflozin (BMS-512148), a potent sodium-glucose cotransporter type II inhibitor, in animals and humans.

Mary T. Obermeier; Ming Yao; Ashish Khanna; Barry Koplowitz; Mingshe Zhu; Wenying Li; Bernard J. Komoroski; Sreeneeranj Kasichayanula; Lorell Discenza; William N. Washburn; Wei Meng; Bruce A. Ellsworth; Jean M. Whaley; William G. Humphreys

(2S,3R,4R,5S,6R)-2-(3-(4-Ethoxybenzyl)-4-chlorophenyl)-6-hydroxymethyl-tetrahydro-2H-pyran-3,4,5-triol (dapagliflozin; BMS-512148) is a potent sodium-glucose cotransporter type II inhibitor in animals and humans and is currently under development for the treatment of type 2 diabetes. The preclinical characterization of dapagliflozin, to allow compound selection and prediction of pharmacological and dispositional behavior in the clinic, involved Caco-2 cell permeability studies, cytochrome P450 (P450) inhibition and induction studies, P450 reaction phenotyping, metabolite identification in hepatocytes, and pharmacokinetics in rats, dogs, and monkeys. Dapagliflozin was found to have good permeability across Caco-2 cell membranes. It was found to be a substrate for P-glycoprotein (P-gp) but not a significant P-gp inhibitor. Dapagliflozin was not found to be an inhibitor or an inducer of human P450 enzymes. The in vitro metabolic profiles of dapagliflozin after incubation with hepatocytes from mice, rats, dogs, monkeys, and humans were qualitatively similar. Rat hepatocyte incubations showed the highest turnover, and dapagliflozin was most stable in human hepatocytes. Prominent in vitro metabolic pathways observed were glucuronidation, hydroxylation, and O-deethylation. Pharmacokinetic parameters for dapagliflozin in preclinical species revealed a compound with adequate oral exposure, clearance, and elimination half-life, consistent with the potential for single daily dosing in humans. The pharmacokinetics in humans after a single dose of 50 mg of [14C]dapagliflozin showed good exposure, low clearance, adequate half-life, and no metabolites with significant pharmacological activity or toxicological concern.


Methods in Enzymology | 1991

Assay strategies and methods for phospholipases.

Laure J. Reynolds; William N. Washburn; Raymond A. Deems; Edward A. Dennis

Of the general considerations discussed, the two issues which are most important in choosing an assay are (1) what sensitivity is required to assay a particular enzyme and (2) whether the assay must be continuous. One can narrow the options further by considering substrate availability, enzyme specificity, assay convenience, or the presence of incompatible side reactions. In addition, the specific preference of a particular phospholipase for polar head group, micellar versus vesicular substrates, and anionic versus nonionic detergents may further restrict the options. Of the many assays described in this chapter, several have limited applicability or serious drawbacks and are not commonly employed. The most commonly used phospholipase assays are the radioactive TLC assay and the pH-stat assay. The TLC assay is probably the most accurate, sensitive assay available. These aspects often outweigh the disadvantages of being discontinuous, tedious, and expensive. The radioactive E. coli assay has become popular recently as an alternative to the TLC assay for the purification of the mammalian nonpancreatic phospholipases. The assay is less time consuming and less expensive than the TLC assay, but it is not appropriate when careful kinetics are required. Where less sensitivity is needed, or when a continuous assay is necessary, the pH-stat assay is often employed. With purified enzymes, when free thiol groups are not present, a spectrophotometric thiol assay can be used. This assay is approximately as sensitive as the pH-stat assay but is more convenient and more reproducible, although the substrate is not available commercially. Despite the many assay choices available, the search continues for a convenient, generally applicable assay that is both sensitive and continuous. The spectrophotometric SIBLINKS assay and some of the fluorescent assays show promise of filling this need.


Journal of Medicinal Chemistry | 2014

Identification of a nonbasic melanin hormone receptor 1 antagonist as an antiobesity clinical candidate.

William N. Washburn; Mark Manfredi; Pratik Devasthale; Guohua Zhao; Saleem Ahmad; Andres Hernandez; Jeffrey A. Robl; Wei Wang; James Mignone; Zhenghua Wang; Khehyong Ngu; Mary Ann Pelleymounter; Daniel Longhi; Rulin Zhao; Bei Wang; Ning Huang; Neil Flynn; Anthony V. Azzara; Joel C. Barrish; Kenneth Rohrbach; James Devenny; Michael J. Thomas; Susan Glick; Helen E. Godonis; Susan J. Harvey; Mary Jane Cullen; Hongwei Zhang; Christian Caporuscio; Paul Stetsko; Mary F. Grubb

Identification of MCHR1 antagonists with a preclinical safety profile to support clinical evaluation as antiobesity agents has been a challenge. Our finding that a basic moiety is not required for MCHR1 antagonists to achieve high affinity allowed us to explore structures less prone to off-target activities such as hERG inhibition. We report the SAR evolution of hydroxylated thienopyrimidinone ethers culminating in the identification of 27 (BMS-819881), which entered obesity clinical trials as the phosphate ester prodrug 35 (BMS-830216).


Journal of the American Chemical Society | 1973

Remote oxidation of steroids by photolysis of attached benzophenone groups

Ronald Breslow; S. Baldwin; T. Flechtner; Paul Kalicky; Sophia Y. Liu; William N. Washburn


Journal of the American Chemical Society | 1990

Suicide-inhibitory bifunctionally linked substrates (SIBLINKS) as phospholipase A2 inhibitors

William N. Washburn; Edward A. Dennis


Journal of the American Chemical Society | 1973

Studies on the prostaglandin A 2 synthetase complex from Plexaura homomalla.

E. J. Corey; William N. Washburn; Jong C. Chen


Journal of the American Chemical Society | 1990

Novel general approach for the assay and inhibition of hydrolytic enzymes utilizing suicide-inhibitory bifunctionally linked substrates (SIBLINKS): exemplified by a phospholipase A2 assay

William N. Washburn; Edward A. Dennis


Journal of the American Chemical Society | 1972

Introduction of a 9(11) double bond into steroids by selective free-radical halogenation

Ronald Breslow; James A. Dale; Paul Kalicky; Sophia Y. Liu; William N. Washburn

Collaboration


Dive into the William N. Washburn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Meng

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Wu

Bristol-Myers Squibb

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge