Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Besio is active.

Publication


Featured researches published by Roberta Besio.


Blood | 2009

In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta

Cristina Panaroni; Roberta Gioia; Anna Lupi; Roberta Besio; Steven A. Goldstein; Jaclynn M. Kreider; Sergey Leikin; Juan Carlos Vera; Edward L. Mertz; Egon Perilli; Fabio Baruffaldi; Isabella Villa; Aurora Farina; Marco Casasco; Giuseppe Cetta; Antonio Rossi; Annalisa Frattini; Joan C. Marini; Paolo Vezzoni; Antonella Forlino

Autosomal dominant osteogenesis imperfecta (OI) caused by glycine substitutions in type I collagen is a paradigmatic disorder for stem cell therapy. Bone marrow transplantation in OI children has produced a low engraftment rate, but surprisingly encouraging symptomatic improvements. In utero transplantation (IUT) may hold even more promise. However, systematic studies of both methods have so far been limited to a recessive mouse model. In this study, we evaluated intrauterine transplantation of adult bone marrow into heterozygous BrtlIV mice. Brtl is a knockin mouse with a classical glycine substitution in type I collagen [alpha1(I)-Gly349Cys], dominant trait transmission, and a phenotype resembling moderately severe and lethal OI. Adult bone marrow donor cells from enhanced green fluorescent protein (eGFP) transgenic mice engrafted in hematopoietic and nonhematopoietic tissues differentiated to trabecular and cortical bone cells and synthesized up to 20% of all type I collagen in the host bone. The transplantation eliminated the perinatal lethality of heterozygous BrtlIV mice. At 2 months of age, femora of treated Brtl mice had significant improvement in geometric parameters (P < .05) versus untreated Brtl mice, and their mechanical properties attained wild-type values. Our results suggest that the engrafted cells form bone with higher efficiency than the endogenous cells, supporting IUT as a promising approach for the treatment of genetic bone diseases.


Stem Cells | 2012

Impaired osteoblastogenesis in a murine model of dominant osteogenesis imperfecta: A new target for osteogenesis imperfecta pharmacological therapy

Roberta Gioia; Cristina Panaroni; Roberta Besio; Giovanni Palladini; Giampaolo Merlini; Vincenzo Giansanti; Ivana A. Scovassi; Simona Villani; Isabella Villa; Anna Villa; Paolo Vezzoni; Ruggero Tenni; Antonio Rossi; Joan C. Marini; Antonella Forlino

The molecular basis underlying the clinical phenotype in bone diseases is customarily associated with abnormal extracellular matrix structure and/or properties. More recently, cellular malfunction has been identified as a concomitant causative factor and increased attention has focused on stem cells differentiation. Classic osteogenesis imperfecta (OI) is a prototype for heritable bone dysplasias: it has dominant genetic transmission and is caused by mutations in the genes coding for collagen I, the most abundant protein in bone. Using the Brtl mouse, a well‐characterized knockin model for moderately severe dominant OI, we demonstrated an impairment in the differentiation of bone marrow progenitor cells toward osteoblasts. In mutant mesenchymal stem cells (MSCs), the expression of early (Runx2 and Sp7) and late (Col1a1 and Ibsp) osteoblastic markers was significantly reduced with respect to wild type (WT). Conversely, mutant MSCs generated more colony‐forming unit‐adipocytes compared to WT, with more adipocytes per colony, and increased number and size of triglyceride drops per cell. Autophagy upregulation was also demonstrated in mutant adult MSCs differentiating toward osteogenic lineage as consequence of endoplasmic reticulum stress due to mutant collagen retention. Treatment of the Brtl mice with the proteasome inhibitor Bortezomib ameliorated both osteoblast differentiation in vitro and bone properties in vivo as demonstrated by colony‐forming unit‐osteoblasts assay and peripheral quantitative computed tomography analysis on long bones, respectively. This is the first report of impaired MSC differentiation to osteoblasts in OI, and it identifies a new potential target for the pharmacological treatment of the disorder. STEM CELLS2012;30:1465–1476


European Biophysics Journal | 2010

Identifying the structure of the active sites of human recombinant prolidase

Roberta Besio; Stefania Alleva; Antonella Forlino; Anna Lupi; Carlo Meneghini; Velia Minicozzi; Antonella Profumo; Francesco Stellato; Ruggero Tenni; Silvia Morante

In this paper we provide a detailed biochemical and structural characterization of the active site of recombinant human prolidase, a dimeric metalloenzyme, whose misfunctioning causes a recessive connective tissue disorder (prolidase deficiency) characterized by severe skin lesions, mental retardation and respiratory tract infections. It is known that the protein can host two metal ions in the active site of each constituent monomer. We prove that two different kinds of metals (Mn and Zn) can be simultaneously present in the protein active sites with the protein partially maintaining its enzymatic activity. Structural information extracted from X-ray absorption spectroscopy measurements have been used to yield a full reconstruction of the atomic environment around each one of the two monomeric active sites. In particular, as for the metal ion occupation configuration of the recombinant human prolidase, we have found that one of the two active sites is occupied by two Zn ions and the second one by one Zn and one Mn ion. In both dinuclear units a histidine residue is bound to a Zn ion.


PLOS Genetics | 2016

Sc65-null mice provide evidence for a novel endoplasmic reticulum complex regulating collagen lysyl hydroxylation

Melissa E. Heard; Roberta Besio; Mary Ann Weis; Jyoti Rai; David M. Hudson; Milena Dimori; Sarah M. Zimmerman; Jeffrey A. Kamykowski; William R. Hogue; Frances L. Swain; Marie Schluterman Burdine; Samuel G. Mackintosh; Alan J. Tackett; Larry J. Suva; David R. Eyre; Roy Morello

Collagen is a major component of the extracellular matrix and its integrity is essential for connective tissue and organ function. The importance of proteins involved in intracellular collagen post-translational modification, folding and transport was recently highlighted from studies on recessive forms of osteogenesis imperfecta (OI). Here we describe the critical role of SC65 (Synaptonemal Complex 65, P3H4), a leprecan-family member, as part of an endoplasmic reticulum (ER) complex with prolyl 3-hydroxylase 3. This complex affects the activity of lysyl-hydroxylase 1 potentially through interactions with the enzyme and/or cyclophilin B. Loss of Sc65 in the mouse results in instability of this complex, altered collagen lysine hydroxylation and cross-linking leading to connective tissue defects that include low bone mass and skin fragility. This is the first indication of a prolyl-hydroxylase complex in the ER controlling lysyl-hydroxylase activity during collagen synthesis.


Human Molecular Genetics | 2015

Altered cytoskeletal organization characterized lethal but not surviving Brtl+/− mice: insight on phenotypic variability in osteogenesis imperfecta

Laura Bianchi; Assunta Gagliardi; Silvia Maruelli; Roberta Besio; Claudia Landi; Roberta Gioia; Kenneth M. Kozloff; Basma Khoury; Paul Coucke; Sofie Symoens; Joan C. Marini; Antonio Rossi; Luca Bini; Antonella Forlino

Osteogenesis imperfecta (OI) is a heritable bone disease with dominant and recessive transmission. It is characterized by a wide spectrum of clinical outcomes ranging from very mild to lethal in the perinatal period. The intra- and inter-familiar OI phenotypic variability in the presence of an identical molecular defect is still puzzling to the research field. We used the OI murine model Brtl(+/-) to investigate the molecular basis of OI phenotypic variability. Brtl(+/-) resembles classical dominant OI and shows either a moderately severe or a lethal outcome associated with the same Gly349Cys substitution in the α1 chain of type I collagen. A systems biology approach was used. We took advantage of proteomic pathway analysis to functionally link proteins differentially expressed in bone and skin of Brtl(+/-) mice with different outcomes to define possible phenotype modulators. The skin/bone and bone/skin hybrid networks highlighted three focal proteins: vimentin, stathmin and cofilin-1, belonging to or involved in cytoskeletal organization. Abnormal cytoskeleton was indeed demonstrated by immunohistochemistry to occur only in tissues from Brtl(+/-) lethal mice. The aberrant cytoskeleton affected osteoblast proliferation, collagen deposition, integrin and TGF-β signaling with impairment of bone structural properties. Finally, aberrant cytoskeletal assembly was detected in fibroblasts obtained from lethal, but not from non-lethal, OI patients carrying an identical glycine substitution. Our data demonstrated that compromised cytoskeletal assembly impaired both cell signaling and cellular trafficking in mutant lethal mice, altering bone properties. These results point to the cytoskeleton as a phenotypic modulator and potential novel target for OI treatment.


PLOS ONE | 2013

Kinetic and Structural Evidences on Human Prolidase Pathological Mutants Suggest Strategies for Enzyme Functional Rescue

Roberta Besio; Roberta Gioia; Federica Cossu; Enrico Monzani; Stefania Nicolis; Lucia Cucca; Antonella Profumo; Luigi Casella; Ruggero Tenni; Martino Bolognesi; Antonio Rossi; Antonella Forlino

Prolidase is the only human enzyme responsible for the digestion of iminodipeptides containing proline or hydroxyproline at their C-terminal end, being a key player in extracellular matrix remodeling. Prolidase deficiency (PD) is an intractable loss of function disease, characterized by mutations in the prolidase gene. The exact causes of activity impairment in mutant prolidase are still unknown. We generated three recombinant prolidase forms, hRecProl-231delY, hRecProl-E412K and hRecProl-G448R, reproducing three mutations identified in homozygous PD patients. The enzymes showed very low catalytic efficiency, thermal instability and changes in protein conformation. No variation of Mn(II) cofactor affinity was detected for hRecProl-E412K; a compromised ability to bind the cofactor was found in hRecProl-231delY and Mn(II) was totally absent in hRecProl-G448R. Furthermore, local structure perturbations for all three mutants were predicted by in silico analysis. Our biochemical investigation of the three causative alleles identified in perturbed folding/instability, and in consequent partial prolidase degradation, the main reasons for enzyme inactivity. Based on the above considerations we were able to rescue part of the prolidase activity in patients’ fibroblasts through the induction of Heath Shock Proteins expression, hinting at new promising avenues for PD treatment.


Journal of Proteomics | 2012

Differential response to intracellular stress in the skin from osteogenesis imperfecta Brtl mice with lethal and non lethal phenotype: A proteomic approach☆

Laura Bianchi; Assunta Gagliardi; Roberta Gioia; Roberta Besio; Chiara Tani; Claudia Landi; Maria Cipriano; Anna Gimigliano; Antonio Rossi; Joan C. Marini; Antonella Forlino; Luca Bini

Phenotypic variability in the presence of an identical molecular defect is a recurrent feature in heritable disorders and it was also reported in osteogenesis imperfecta (OI). OI is a prototype for skeletal dysplasias mainly caused by mutations in the two genes coding for type I collagen. No definitive cure is available for this disorder, but the understanding of molecular basis in OI phenotypic modulation will have a pivotal role in identifying possible targets to develop novel drug therapy. We used a functional proteomic approach to address the study of phenotypic variability using the skin of the OI murine model Brtl. Brtl mice reproduce the molecular defect, dominant transmission and phenotypic variability of human OI patients. In the presence of a Gly349Cys substitution in α1(I)-collagen Brtl mice can have a lethal or a moderately severe outcome. Differential expression of chaperones, proteasomal subunits, metabolic enzymes, and proteins related to cellular fate demonstrated that a different ability to adapt to cellular stress distinguished mutant from wild-type mice and mutant lethal from surviving mutant animals. Interestingly, class discovery analysis identified clusters of differentially expressed proteins associated with a specific outcome, and functional analysis contributed to a deeper investigation into biochemical and cellular pathways affected by the disease. This article is part of a Special Issue entitled: Translational Proteomics.


PLOS ONE | 2017

The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury

Thomas M. Woodcock; Tony Frugier; Tan Thanh Nguyen; Bridgette D. Semple; Nicole Bye; Matteo Massara; Benedetta Savino; Roberta Besio; Cristina Sobacchi; Massimo Locati; Maria Cristina Morganti-Kossmann

The atypical chemokine receptor ACKR2 promotes resolution of acute inflammation by operating as a scavenger receptor for inflammatory CC chemokines in several experimental models of inflammatory disorders, however its role in the brain remains unclear. Based on our previous reports of increased expression of inflammatory chemokines and their corresponding receptors following traumatic brain injury (TBI), we hypothesised that ACKR2 modulates neuroinflammation following brain trauma and that its deletion exacerbates cellular inflammation and chemokine production. We demonstrate increased CCL2 and ACKR2 mRNA expression in post-mortem human brain, whereby ACKR2 mRNA levels correlated with later times post-TBI. This data is consistent with the transient upregulation of ACKR2 observed in mouse brain after closed head injury (CHI). As compared to WT animals, ACKR2-/- mice showed a higher mortality rate after CHI, while the neurological outcome in surviving mice was similar. At day 1 post-injury, ACKR2-/- mice displayed aggravated lesion volume and no differences in CCL2 expression and macrophage recruitment relative to WT mice. Reciprocal regulation of ACKR2 and CCL2 expression was explored in cultured astrocytes, which are recognized as the major source of CCL2 and also express ACKR2. ACKR2 mRNA increased as early as 2 hours after an inflammatory challenge in WT astrocytes. As expected, CCL2 expression also dramatically increased at 4 hours in WT astrocytes but was significantly lower in ACKR2-/- astrocytes, possibly indicating a co-regulation of CCL2 and ACKR2 in these cells. Conversely, in vivo, CCL2 mRNA/protein levels were increased similarly in ACKR2-/- and WT brains at 4 and 12 hours after CHI, in line with the lack of differences in cerebral macrophage recruitment and neurological recovery. In conclusion, ACKR2 is induced after TBI and has a significant impact on mortality and lesion development acutely following CHI, while its role in chemokine expression, macrophage activation, brain pathology, and neurological recovery at later time-points is minor. Concordant to evidence in multiple sclerosis experimental models, our data corroborate a distinct role for ACKR2 in cerebral inflammatory processes compared to its reported functions in peripheral tissues.


World Journal of Gastroenterology | 2013

Role of the advanced glycation end products receptor in Crohn's disease inflammation.

Rachele Ciccocioppo; Alessandro Vanoli; Catherine Klersy; V. Imbesi; V. Boccaccio; Rachele Manca; E. Betti; Giuseppina Cristina Cangemi; E. Strada; Roberta Besio; Antonio Rossi; Colomba Falcone; Paolo Fociani; Piergiorgio Danelli; Gino Roberto Corazza

AIM To investigate the level of mucosal expression and the involvement of the receptor for the advanced glycation end products (RAGE) in delayed apoptosis and tumor necrosis factor (TNF)-α production in Crohns disease (CD). METHODS Surgical and endoscopic specimens from both inflamed and non-inflamed areas of the ileum and/or colon were collected from 20 and 14 adult CD patients, respectively, and used for the assessment of RAGE expression by means of immunohistochemistry and western blotting analysis. Normal tissues from 21 control subjects were used for comparison. The same polyclonal anti-human RAGE antibody (R and D System) was used in all experimental conditions. RAGE staining was quantized by a score including both the amount of positive cells and intensity of immunoreactivity; cellular pattern was also described. The effects of RAGE blocking on apoptotic rate and TNF-α production were investigated on immune cells freshly isolated from CD mucosa and incubated both with and without the muramyl dipeptide used as antigenic stimulus. Statistical analysis was performed via the test for trend, with regression models to account for intra-patient correlations. A 2-sided P < 0.05 was considered significant. RESULTS In inflamed areas, RAGE expression in both the epithelial and lamina propria compartments was higher than control tissues (P = 0.001 and 0.021, respectively), and a cluster of positive cells were usually found in proximity of ulcerative lesions. Similar results were obtained in the lamina propria compartment of non-inflamed areas (P = 0.025). The pattern of staining was membranous and granular cytosolic at the epithelial level, while in the lamina propria it was diffuse cytosolic. When evaluating the amount of protein expression by immunoblotting, a significant increase of both surface area and band intensity (P < 0.0001 for both) was observed in CD inflamed areas compared to control tissue, while in non-inflamed areas a significant increase was found only for band intensity (P < 0.005). Moreover, a significantly lower expression in non-inflamed areas in comparison with inflamed areas was found for both surface area and band intensity (P < 0.0006 for both). Finally, RAGE blocking largely affects both the apoptotic rate of mucosal cells (towards an increase in both non-inflamed and inflamed areas of P < 0.001 and < 0.0001, respectively) and TNF-α secretion (towards a decrease in both non-inflamed and inflamed areas of P < 0.05 and < 0.01, respectively), mainly in the presence of antigenic stimulation. CONCLUSION RAGE is up-regulated in CD, especially in inflamed areas, and it appears to play a role in the mechanisms involved in chronic inflammation.


Expert opinion on orphan drugs | 2015

Treatment options for osteogenesis imperfecta

Roberta Besio; Antonella Forlino

Introduction: Osteogenesis imperfecta (OI) is a heritable disease characterized by bone fragility. A wide range of clinical severity and heterogeneity of the molecular defects is reported. Mutations in 14 genes have so far been identified as responsible for OI with either dominant or recessive transmission. OI forms are mainly caused by defects in collagen type I amount, synthesis, structure, post-translation modifications, intracellular trafficking or extracellular processing or in osteoblasts maturation. No definitive cure is available for OI, but the recent discovery of new causative genes have contributed to increased understanding of bone biology allowing the identification of novel therapeutic targets. Areas covered: This paper reviews classical dominant OI caused by mutation in the genes coding the α chains of type I collagen, as well as the pathophysiology of the more recently discovered, mainly recessive, OI forms. Current surgical and pharmacological treatments as well as novel therapeutic approaches are addressed. A literature search was performed on PubMed, and the most relevant references are cited. Expert opinion: A critical view on current and novel therapies is given, with particular emphasis on those that target bone cell activity and differentiation, genetic correction of mutant alleles and cellular therapy.

Collaboration


Dive into the Roberta Besio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joan C. Marini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabella Villa

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge