Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta E. Bernard is active.

Publication


Featured researches published by Roberta E. Bernard.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2007

p38 MAPK Inhibition Reduces Aortic Ultrasmall Superparamagnetic Iron Oxide Uptake in a Mouse Model of Atherosclerosis. MRI Assessment

Joanne B. Morris; Alan R. Olzinski; Roberta E. Bernard; Karpagam Aravindhan; Rosanna C. Mirabile; Rogely W. Boyce; Robert N. Willette; Beat M. Jucker

Objective—Ultrasmall superparamagnetic iron oxide (USPIO) contrast agents have been used for noninvasive MRI assessment of atherosclerotic plaque inflammation. The purpose of this study was to noninvasively evaluate USPIO uptake in aorta of apoE−/− mice and to determine the effects of Angiotensin II (Ang II) infusion and chronic antiinflammatory treatment with a p38 MAPK inhibitor on this uptake. Methods and Results—ApoE−/− mice were administered saline or Ang II (1.44 mg/kg/d) for 21 days. In vivo MRI assessment of USPIO uptake in the aortic arch was observed in all animals. However, although the Ang II group had significantly higher absolute iron content (↑103%, P<0.001) in the aortic arch compared with the saline group, the p38 MAPK inhibitor (SB-239063, 150 mg/kg/d) treatment group did not (↑6%, NS). The in vivo MRI signal intensity was significantly correlated to the absolute iron content in the aortic arch. Histological evaluation of the aortic root lesion area showed colocalization of USPIO with macrophages and a reduction in USPIO but not macrophage content with SB-239063 treatment. Conclusion—The present study demonstrates that noninvasive assessment of USPIO uptake, as a marker for inflammation in murine atherosclerotic plaque, is feasible and that p38 MAPK inhibition attenuates the uptake of USPIO in aorta of Ang II–infused apoE−/− mice.


Circulation-cardiovascular Imaging | 2008

In Vivo Serial Assessment of Aortic Aneurysm Formation in Apolipoprotein E–Deficient Mice via MRI

Gregory H. Turner; Alan R. Olzinski; Roberta E. Bernard; Karpagam Aravindhan; Heather Karr; Rosanna C. Mirabile; Robert N. Willette; Peter J. Gough; Beat M. Jucker

Background—Hyperlipidimic mice administered angiotensin II have been used for the study of abdominal aortic aneurysms (AAAs). The purpose of this study was to examine the use of MRI for studying AAA development and for examining the effects of pharmacological intervention on AAA development in the apolipoprotein E–deficient mouse. Methods and Results—Suprarenal aortic aneurysms were generated in apolipoprotein E–deficient mice administered angiotensin II (1000 ng/kg per min) for up to 28 days. In vivo MRI was performed serially (once weekly) to assess AAA development and rupture. Comparison of AAA size as measured by in vivo and ex vivo MRI resulted in excellent agreement (r=0.96, P<0.0001). In addition, MRI correlated with histology-derived AAA area assessment (in vivo versus histology: r=0.84, P<0.0001; ex vivo versus histology: r=0.89, P<0.0001). In a separate study, angiotensin II–administered apolipoprotein E–deficient mice were treated with doxycycline (broad-based matrix metalloproteinase inhibitor; 30 mg/kg per day for 28 days). MRI was able to noninvasively assess a reduced rate of AAA development (46% versus 71%, P<0.05), a decreased AAA area (2.56 versus 4.02 mm2, P<0.01), and decreased incidence of rupture (43% versus 100%) in treated versus control animals. Inhibition of aorta matrix metalloproteinase 2/9 activity was observed in the treated animals. Conclusions—These results demonstrate the use of MRI to noninvasively and temporally assess AAA development on pharmacological intervention in this preclinical cardiovascular disease model.


Journal of Cardiovascular Pharmacology | 2007

PPAR?? Activation Normalizes Cardiac Substrate Metabolism and Reduces Right Ventricular Hypertrophy in Congestive Heart Failure

Beat M. Jucker; Christopher P. Doe; Christine G. Schnackenberg; Alan R. Olzinski; Kristeen Maniscalco; Carolyn Williams; Tom C.-C. Hu; Stephen C. Lenhard; Melissa H. Costell; Roberta E. Bernard; Lea Sarov-Blat; Klaudia Steplewski; Robert N. Willette

Previously, it was shown that selective deletion of peroxisome proliferator activated receptor δ (PPARδ) in the heart resulted in a cardiac lipotoxicity, hypertrophy, and heart failure. The aim of the present study was to determine the effects of chronic and selective pharmacological activation of PPARδ in a model of congestive heart failure. PPARδ-specific agonist treatment (GW610742X at 30 and 100 mg/kg/day for 6-9 weeks) was initiated immediately postmyocardial infarction (MI) in Sprague-Dawley rats. Magnetic resonance imaging/spectroscopy was used to assess cardiac function and energetics. A 1-13C glucose clamp was performed to assess relative cardiac carbohydrate versus fat oxidation. Additionally, cardiac hemodynamics and reverse-transcription polymerase chain reaction gene expression analysis was performed. MI rats had significantly reduced left ventricle (LV) ejection fractions and whole heart phosphocreatine/adenosine triphosphate ratio compared with Sham animals (reduction of 43% and 14%, respectively). However, GW610742X treatment had no effect on either parameter. In contrast, the decrease in relative fat oxidation rate observed in both LV and right ventricle (RV) following MI (decrease of 58% and 54%, respectively) was normalized in a dose-dependent manner following treatment with GW610742X. These metabolic changes were associated with an increase in lipid transport/metabolism target gene expression (eg, CD36, CPT1, UCP3). Although there was no difference between groups in LV weight or infarct size measured upon necropsy, there was a dramatic reduction in RV hypertrophy and lung congestion (decrease of 22-48%, P < 0.01) with treatment which was associated with a >7-fold decrease (P < 0.05) in aterial natriuretic peptide gene expression in RV. Diuretic effects were not observed with GW610742X. In conclusion, chronic treatment with a selective PPARδ agonist normalizes cardiac substrate metabolism and reduces RV hypertrophy and pulmonary congestion consistent with improvement in congestive heart failure.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2010

Pharmacological Inhibition of C-C Chemokine Receptor 2 Decreases Macrophage Infiltration in the Aortic Root of the Human C-C Chemokine Receptor 2/Apolipoprotein E −/− Mouse: Magnetic Resonance Imaging Assessment

Alan R. Olzinski; Gregory H. Turner; Roberta E. Bernard; Heather Karr; Carla A. Cornejo; Karpagam Aravindhan; Bao Hoang; Michael A. Ringenberg; Pu Qin; Krista B. Goodman; Robert N. Willette; Colin H. Macphee; Beat M. Jucker; Clark A. Sehon; Peter J. Gough

Purpose—This study assessed the pharmacological effect of a novel selective C-C chemokine receptor (CCR) 2 antagonist (GSK1344386B) on monocyte/macrophage infiltration into atherosclerotic plaque using magnetic resonance imaging (MRI) in an atherosclerotic mouse model. Methods and Results—Apolipoprotein E−/− mice expressing human CCR2 were fed a Western diet (vehicle group) or a Western diet plus10 mg/kg per day of GSK1344386B (GSK1344386B group). After the baseline MRI, mice were implanted with osmotic pumps containing angiotensin II, 1000 ng/kg per minute, to accelerate lesion formation. After five weeks of angiotensin II administration, mice received ultrasmall superparamagnetic iron oxide, an MRI contrast agent for the assessment of monocyte/macrophage infiltration to the plaque, and underwent imaging. After imaging, mice were euthanized, and the heart and aorta were harvested for ex vivo MRI and histopathological examination. After 5 weeks of dietary dosing, there were no significant differences between groups in body or liver weight or plasma cholesterol concentrations. An in vivo MRI reflected a decrease in ultrasmall superparamagnetic iron oxide contrast agent uptake in the aortic arch of the GSK1344386B group (P<0.05). An ex vivo MRI of the aortic root also reflected decreased ultrasmall superparamagnetic iron oxide uptake in the GSK1344386B group and was verified by absolute iron analysis (P<0.05). Although there was no difference in aortic root lesion area between groups, there was a 30% reduction in macrophage area observed in the GSK1344386B group (P<0.05). Conclusion—An MRI was used to noninvasively assess the decreased macrophage content in the atherosclerotic plaque after selective CCR2 inhibition.


Journal of Magnetic Resonance Imaging | 2009

Assessment of macrophage infiltration in a Murine model of abdominal aortic aneurysm

Gregory H. Turner; Alan R. Olzinski; Roberta E. Bernard; Karpagam Aravindhan; Ryan J. Boyle; Matt J. Newman; Scott D. Gardner; Robert N. Willette; Peter J. Gough; Beat M. Jucker

To evaluate the use of an ultrasmall superparamagnetic iron oxide (USPIO) contrast agent as a marker for the detection of macrophage in a preclinical abdominal aortic aneurysm animal (AAA) model.


Frontiers in Pharmacology | 2012

Comparison of Soluble Guanylate Cyclase Stimulators and Activators in Models of Cardiovascular Disease Associated with Oxidative Stress

Melissa H. Costell; Nicolas Ancellin; Roberta E. Bernard; Shufang Zhao; John J Upson; Lisa A. Morgan; Kristeen Maniscalco; Alan R. Olzinski; Victoria L. T. Ballard; Kenny Herry; Pascal Grondin; Nerina Dodic; Olivier Mirguet; Anne Marie Jeanne Bouillot; Francoise Jeanne Gellibert; Robert W. Coatney; John J. Lepore; Beat M. Jucker; Larry J. Jolivette; Robert N. Willette; Christine G. Schnackenberg; David J. Behm

Soluble guanylate cyclase (sGC), the primary mediator of nitric oxide (NO) bioactivity, exists as reduced (NO-sensitive) and oxidized (NO-insensitive) forms. We tested the hypothesis that the cardiovascular protective effects of NO-insensitive sGC activation would be potentiated under conditions of oxidative stress compared to those of NO-sensitive sGC stimulation. The cardiovascular effects of the NO-insensitive sGC activator GSK2181236A [a low, non-depressor dose, and a high dose which lowered mean arterial pressure (MAP) by 5–10 mmHg] and those of equi-efficacious doses of the NO-sensitive sGC stimulator BAY 60-4552 were assessed in (1) Sprague Dawley rats during coronary artery ischemia/reperfusion (I/R) and (2) spontaneously hypertensive stroke prone rats (SHR-SP) on a high salt/fat diet (HSFD). In I/R, neither compound reduced infarct size 24 h after reperfusion. In SHR-SP, HSFD increased MAP, urine output, microalbuminuria, and mortality, caused left ventricular hypertrophy with preserved ejection fraction, and impaired endothelium-dependent vasorelaxation. The low dose of BAY 60-4552, but not that of GSK2181236A, decreased urine output, and improved survival. Conversely, the low dose of GSK2181236A, but not that of BAY 60-4552, attenuated the development of cardiac hypertrophy. The high doses of both compounds similarly attenuated cardiac hypertrophy and improved survival. In addition to these effects, the high dose of BAY 60-4552 reduced urine output and microalbuminuria and attenuated the increase in MAP to a greater extent than did GSK2181236A. Neither compound improved endothelium-dependent vasorelaxation. In SHR-SP isolated aorta, the vasodilatory responses to the NO-dependent compounds carbachol and sodium nitroprusside were attenuated by HSFD. In contrast, the vasodilatory responses to both GSK2181236A and BAY 60-4552 were unaltered by HSFD, indicating that reduced NO-bioavailability and not changes in the oxidative state of sGC is responsible for the vascular dysfunction. In summary, GSK2181236A and BAY 60-4552 provide partial benefit against hypertension-induced end-organ damage. The differential beneficial effects observed between these compounds could reflect tissue-specific changes in the oxidative state of sGC and might help direct the clinical development of these novel classes of therapeutic agents.


Bioorganic & Medicinal Chemistry Letters | 2011

CCR2 receptor antagonists: Optimization of biaryl sulfonamides to increase activity in whole blood

Gren Z. Wang; Pamela A. Haile; Tom Daniel; Benjamin Belot; Andrew Q. Viet; Krista B. Goodman; Deyou Sha; Sarah E. Dowdell; Norbert Varga; Xuan Hong; Subhas J. Chakravorty; Christine L. Webb; Carla A. Cornejo; Alan R. Olzinski; Roberta E. Bernard; Christopher Evans; Amanda Emmons; Jacques Briand; Chun-wa Chung; Ruben Quek; Dennis Lee; Peter J. Gough; Clark A. Sehon

A series of biarylsulfonamides was identified as hCCR2 receptor antagonist but suffered from high plasma protein binding resulting in a >100 fold shift in activity in a functional GTPγS assay run in tandem in the presence and absence of human serum albumin. Introduction of an aryl amide with ethylenediamine linker led to compounds with reduced shifts and improved activity in whole blood.


Journal of the American Heart Association | 2017

Activation of the Amino Acid Response Pathway Blunts the Effects of Cardiac Stress

Pu Qin; Pelin Arabacilar; Roberta E. Bernard; Weike Bao; Alan R. Olzinski; Yuanjun Guo; Hind Lal; Stephen Eisennagel; Michael Platchek; Wensheng Xie; Julius del Rosario; Mohamad Nayal; Quinn Lu; Theresa J. Roethke; Christine G. Schnackenberg; Fe Wright; Michael P. Quaile; Wendy S. Halsey; Ashley M. Hughes; Ganesh M. Sathe; George P. Livi; Robert B. Kirkpatrick; Xiaoyan A. Qu; Deepak K. Rajpal; Maria Faelth Savitski; Marcus Bantscheff; Gerard Joberty; Giovanna Bergamini; Thomas Force; Gregory J. Gatto

Background The amino acid response (AAR) is an evolutionarily conserved protective mechanism activated by amino acid deficiency through a key kinase, general control nonderepressible 2. In addition to mobilizing amino acids, the AAR broadly affects gene and protein expression in a variety of pathways and elicits antifibrotic, autophagic, and anti‐inflammatory activities. However, little is known regarding its role in cardiac stress. Our aim was to investigate the effects of halofuginone, a prolyl‐tRNA synthetase inhibitor, on the AAR pathway in cardiac fibroblasts, cardiomyocytes, and in mouse models of cardiac stress and failure. Methods and Results Consistent with its ability to inhibit prolyl‐tRNA synthetase, halofuginone elicited a general control nonderepressible 2–dependent activation of the AAR pathway in cardiac fibroblasts as evidenced by activation of known AAR target genes, broad regulation of the transcriptome and proteome, and reversal by l‐proline supplementation. Halofuginone was examined in 3 mouse models of cardiac stress: angiotensin II/phenylephrine, transverse aortic constriction, and acute ischemia reperfusion injury. It activated the AAR pathway in the heart, improved survival, pulmonary congestion, left ventricle remodeling/fibrosis, and left ventricular function, and rescued ischemic myocardium. In human cardiac fibroblasts, halofuginone profoundly reduced collagen deposition in a general control nonderepressible 2–dependent manner and suppressed the extracellular matrix proteome. In human induced pluripotent stem cell–derived cardiomyocytes, halofuginone blocked gene expression associated with endothelin‐1‐mediated activation of pathologic hypertrophy and restored autophagy in a general control nonderepressible 2/eIF2α‐dependent manner. Conclusions Halofuginone activated the AAR pathway in the heart and attenuated the structural and functional effects of cardiac stress.


Biophysical Journal | 2013

Characterization of Small Molecule TRPC3 and TRPC6 agonist and Antagonists

Xiaoping Xu; Irina M. Lozinskaya; Melissa H. Costell; Zuojun Lin; Jennifer A. Ball; Roberta E. Bernard; David J. Behm; Joseph P. Marino; Christine G. Schnackenberg


The FASEB Journal | 2007

Compensatory role for Sgk2 mediated sodium reabsorption during salt deprivation in Sgk1 knockout mice

Christine G. Schnackenberg; Melissa H. Costell; Roberta E. Bernard; Kristine K. Minuti; Eugene T. Grygielko; Michael J. Parsons; Nicholas J. Laping; Graham Duddy

Collaboration


Dive into the Roberta E. Bernard's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert N. Willette

Thomas Jefferson University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge