Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Rigolio is active.

Publication


Featured researches published by Roberta Rigolio.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Functionalization of liposomes with ApoE-derived peptides at different density affects cellular uptake and drug transport across a blood-brain barrier model

Francesca Re; Ilaria Cambianica; Cristiano Zona; Silvia Sesana; Maria Gregori; Roberta Rigolio; Barbara La Ferla; Francesco Nicotra; Gianluigi Forloni; Alfredo Cagnotto; Mario Salmona; Massimo Masserini; Giulio Sancini

A promising strategy to enhance blood-brain barrier penetration by drugs is the functionalization of nanocarriers with uptake-facilitating ligands. We studied the cellular uptake, by cultured RBE4 brain capillary endothelial cells, of nanoliposomes (NLs) covalently coupled with monomer or tandem dimer of apolipoprotein E (ApoE)-derived peptides (residues 141-150), at various densities. NLs without functionalization did not show either relevant membrane accumulation or cellular uptake, as monitored by confocal microscopy and quantified by fluorescence-activated cell sorting. Functionalization with peptides mediated an efficient NLs uptake that increased with peptide density; NLs carrying monomeric peptide performed the best. Moreover, we studied the ability of ApoE-NLs to enhance the transport of a drug payload through a RBE4 cell monolayer. The permeability of a tritiated curcumin derivative was enhanced after its entrapment into ApoE-NLs, in particular those functionalized with the dimer (+83% with respect to free drug, P < 0.01). Thus, these NLs appear particularly suitable for implementing further strategies for drug brain targeting.


Neuroscience Letters | 2001

Anti-apoptotic effect of trans-resveratrol on paclitaxel-induced apoptosis in the human neuroblastoma SH-SY5Y cell line

Gabriella Nicolini; Roberta Rigolio; Mariarosaria Miloso; A. A. E. Bertelli; Giovanni Tredici

Paclitaxel, an anticancer drug, induces apoptosis in human neuroblastoma cell line SH-SY5Y. The addition of trans-resveratrol, a natural antioxidant present in grapes and red wine, to SH-SY5Y cultures exposed to paclitaxel significantly reduces cellular death. The neuroprotective action of trans-resveratrol is due neither to its antioxidant capacity nor to interference with the polymerization of tubulin induced by paclitaxel. However, trans-resveratrol is able to inhibit the activation of caspase 7 and degradation of poly-(ADP-ribose)-polymerase which occur in SH-SY5Y exposed to paclitaxel. Resveratrol, therefore, exerts its anti-apoptotic effect by modulating the signal pathways that commit these neuronal-like cells to apoptosis.


Journal of Neuroendocrinology | 2012

Neuroprotective effects of progesterone in chronic experimental autoimmune encephalomyelitis

Silvia Giatti; Donatella Caruso; Mariaserena Boraso; Federico Abbiati; Elisa Ballarini; Donato Calabrese; Marzia Pesaresi; Roberta Rigolio; María Santos-Galindo; Barbara Viviani; Guido Cavaletti; Luis Miguel Garcia-Segura; R.C. Melcangi

Observations so far obtained in experimental autoimmune encephalomyelitis (EAE) have revealed the promising neuroprotective effects exerted by progesterone (PROG). The findings suggest that this neuroactive steroid may potentially represent a therapeutic tool for multiple sclerosis (MS). However, up to now, the efficacy of PROG has been only tested in the acute phase of the disease, whereas it is well known that MS expresses different features depending on the phase of the disease. Accordingly, we have evaluated the effect of PROG treatment in EAE induced in Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction show that PROG treatment exerts a beneficial effect on clinical score, confirming surrogate parameters of spinal cord damage in chronic EAE (i.e. reactive microglia, cytokine levels, activity of the Na+,K+‐ATPase pump and myelin basic protein expression). An increase of the levels of dihydroprogesterone and isopregnanolone (i.e. two PROG metabolites) was also observed in the spinal cord after PROG treatment. Taken together, these results indicate that PROG is effective in reducing the severity of chronic EAE and, consequently, may have potential with respect to MS treatment.


Neurochemistry International | 2005

Resveratrol interference with the cell cycle protects human neuroblastoma SH-SY5Y cell from paclitaxel-induced apoptosis

Roberta Rigolio; Mariarosaria Miloso; Gabriella Nicolini; Daniela Villa; Arianna Scuteri; M. Simone; Giovanni Tredici

In previous studies we demonstrated that resveratrol acts in an antiapoptotic manner on the paclitaxel-treated human neuroblastoma (HN) SH-SY5Y cell line inhibiting the apoptotic pathways induced by the antineoplastic drug. In the present study we evaluated the antiapoptotic effect of resveratrol, studying its activity on cell cycle progression. We determined the mitotic index of cultures exposed to resveratrol and paclitaxel alone or in combination, the cell cycle distribution by flow cytometric analysis (FACS), and the modulation of some relevant cell cycle regulatory proteins. Resveratrol is able to induce S-phase cell arrest and this interference with the cell cycle is associated with an increase of cyclin E and cyclin A, a downregulation of cyclin D1, and no alteration in cyclin B1 and cdk 1 activation. The resveratrol-induced S-phase block prevents SH-SY5Y from entering into mitosis, the phase of the cell cycle in which paclitaxel exerts its activity, explaining the antiapoptotic effect of resveratrol.


Neurobiology of Disease | 2009

Experimental epothilone B neurotoxicity: results of in vitro and in vivo studies.

Alessia Chiorazzi; Gabriella Nicolini; Annalisa Canta; Norberto Oggioni; Roberta Rigolio; Giacomo Cossa; Raffaella Lombardi; Ilaria Roglio; Ilaria Cervellini; Giuseppe Lauria; Roberto Cosimo Melcangi; Roberto Bianchi; Donatella Crippa; Guido Cavaletti

Epothilones are a novel class of microtubule-targeting anticancer agents that are neurotoxic. In this study, we investigated the epothilone B toxic effect in vitro and we characterized in vivo the general and neurological side effects of epothilone B administration in Wistar and Fischer rats. The in vitro experiments made it possible to explore a wide concentration range (0.1 nM-1 muM) and evidenced a dose-dependent effect of epothilone B exposure on neuron neurite elongation. This dose-dependent neurotoxic effect was confirmed in both in vivo studies performed on two different rat strains at the neurophysiological, behavioral and pathological levels in the dose range 0.25-1.5 mg/kg iv weekly x 4 weeks and tubulin hyper-polymerization was demonstrated in sciatic nerve specimens. These are the first studies of the neurological effects of epothilone B and they can provide a basis for extending pre-clinical investigation to other members of the epothilone family.


Journal of Neuroimmunology | 2004

Pixantrone (BBR2778) reduces the severity of experimental allergic encephalomyelitis

Guido Cavaletti; E Cavalletti; Luca Crippa; E Di Luccio; Norberto Oggioni; Benedetta Mazzanti; Tiziana Biagioli; Sala F; V Sala; M. Frigo; Stefania Rota; E. Tagliabue; L Stanzani; S Galbiati; Roberta Rigolio; C Zoia; Giovanni Tredici; Paolo Perseghin; Maria Dassi; Paolo Riccio; Francesco Lolli

Pixantrone is less cardiotoxic and is similarly effective to mitoxantrone (MTX) as an antineoplastic drug. In our study, pixantrone reduced the severity of acute and decreased the relapse rate of chronic relapsing experimental allergic encephalomyelitis (EAE) in rats. A marked and long-lasting decrease in CD3+, CD4+, CD8+ and CD45RA+ blood cells and reduced anti-MBP titers were observed with both pixantrone and MTX. In vitro mitogen- and antigen-induced T-cell proliferation tests of human and rodents cells evidenced that pixantrone was effective at concentrations which can be effectively obtained after i.v. administration in humans. Cardiotoxicity was present only in MTX-treated rats. The effectiveness and the favorable safety profile makes pixantrone a most promising immunosuppressant agent for clinical use in multiple sclerosis (MS).


The Journal of Neuroscience | 2015

Functional Magnetic Resonance Imaging of Rats with Experimental Autoimmune Encephalomyelitis Reveals Brain Cortex Remodeling.

X Stefano Tambalo; X Luca Peruzzotti-Jametti; Roberta Rigolio; Silvia Fiorini; Pietro Bontempi; Giulia Mallucci; Beatrice Balzarotti; X Paola Marmiroli; Andrea Sbarbati; X Guido Cavaletti; Stefano Pluchino; Pasquina Marzola

Cortical reorganization occurring in multiple sclerosis (MS) patients is thought to play a key role in limiting the effect of structural tissue damage. Conversely, its exhaustion may contribute to the irreversible disability that accumulates with disease progression. Several aspects of MS-related cortical reorganization, including the overall functional effect and likely modulation by therapies, still remain to be elucidated. The aim of this work was to assess the extent of functional cortical reorganization and its brain structural/pathological correlates in Dark Agouti rats with experimental autoimmune encephalomyelitis (EAE), a widely accepted preclinical model of chronic MS. Morphological and functional MRI (fMRI) were performed before disease induction and during the relapsing and chronic phases of EAE. During somatosensory stimulation of the right forepaw, fMRI demonstrated that cortical reorganization occurs in both relapsing and chronic phases of EAE with increased activated volume and decreased laterality index versus baseline values. Voxel-based morphometry demonstrated gray matter (GM) atrophy in the cerebral cortex, and both GM and white matter atrophy were assessed by ex vivo pathology of the sensorimotor cortex and corpus callosum. Neuroinflammation persisted in the relapsing and chronic phases, with dendritic spine density in the layer IV sensory neurons inversely correlating with the number of cluster of differentiation 45-positive inflammatory lesions. Our work provides an innovative experimental platform that may be pivotal for the comprehension of key mechanisms responsible for the accumulation of irreversible brain damage and for the development of innovative therapies to reduce disability in EAE/MS. SIGNIFICANCE STATEMENT Since the early 2000s, functional MRI (fMRI) has demonstrated profound modifications in the recruitment of cortical areas during motor, cognitive, and sensory tasks in multiple sclerosis (MS) patients. Experimental autoimmune encephalomyelitis (EAE) represents a reliable model of the chronic-progressive variant of MS. fMRI studies in EAE have not been performed extensively up to now. This paper reports fMRI studies in a rat model of MS with somatosensory stimulation of the forepaw. We demonstrated modifications in the recruitment of cortical areas consistent with data from MS patients. To the best of our knowledge, this is the first report of cortical remodeling in a preclinical in vivo model of MS.


International Journal of Oncology | 2013

Apigenin impairs oral squamous cell carcinoma growth in vitro inducing cell cycle arrest and apoptosis

Daniele Maggioni; Werner Garavello; Roberta Rigolio; Lorenzo Pignataro; Renato Maria Gaini; Gabriella Nicolini

In the present study, we investigated the effect of apigenin, a flavonoid widely present in fruits and vegetables, on a tongue oral cancer-derived cell line (SCC-25) and on a keratinocyte cell line (HaCaT), with the aim of unveiling its antiproliferative mechanisms. The effect of apigenin on cell growth was evaluated by MTT assay, while apoptosis was investigated by phosphatidyl serine membrane translocation and cell cycle distribution by propidium iodide DNA staining through flow cytometry. In addition the expression of cyclins and cyclin-dependent kinases was evaluated by western blotting. A reduction of apigenin-induced cell growth was found in both cell lines, although SCC-25 cells were significantly more sensitive than the immortalized keratinocytes, HaCaT. Moreover, apigenin induced apoptosis and modulated the cell cycle in SCC-25 cells. Apigenin treatment resulted in cell cycle arrest at both G0/G1 and G2/M checkpoints, while western blot analysis revealed the decreased expression of cyclin D1 and E, and inactivation of CDK1 upon apigenin treatment. These results demonstrate the anticancer potential of apigenin in an oral squamous cell carcinoma cell line, suggesting that it may be a very promising chemopreventive agent due to its cancer cell cytotoxic activity and its ability to act as a cell cycle modulating agent at multiple levels.


Nutrition and Cancer | 2014

Myricetin and Naringenin Inhibit Human Squamous Cell Carcinoma Proliferation and Migration In Vitro

Daniele Maggioni; Gabriella Nicolini; Roberta Rigolio; Luisa Biffi; Lorenzo Pignataro; Renato Maria Gaini; Werner Garavello

In this study the potential anticancer effect of 2 flavonoids, myiricetin (MYR) and naringenin (NAR) has been evaluated on an oral squamous cell carcinoma (OSCC) cell line, SCC-25, and HaCaT cells. Both the flavonoids inhibited SCC-25 cell growth, although NAR selectively affected cancer cells without impairing HaCaT cell growth. The cell proliferation inhibition by MYR and NAR was not related to apoptosis induction, but on cell cycle impairment, because a G0/G1 and a G2/M blockage was highlighted following 24 h of treatment in SCC-25 and HaCaT cells, respectively. Western blot analysis showed that MYR induced a decrease of Cyclin D1 in SCC-25 and of Cyclin B1 in HaCaT cells, while NAR negatively modulated Cyclin D1 expression in SCC-25 cells. Wound-healing and cell invasion assays demonstrated that both the flavonoids were able to reduce motility on both SCC-25 and HaCaT cells. In conclusion the results of the present study show the anticancer potential of NAR and MYR on OSCC because they exert cytostatic effect by the impairment of cell cycle progression. Moreover both the flavonoids inhibit cell migration, thus highlighting their potential effect as antimetastatic agents. Therefore, MYR and NAR appear as promising candidate as oral cancer chemopreventive agents.


Neuroendocrinology | 2015

Dihydrotestosterone as a Protective Agent in Chronic Experimental Autoimmune Encephalomyelitis

Silvia Giatti; Roberta Rigolio; Simone Romano; Nico Mitro; Barbara Viviani; Guido Cavaletti; Donatella Caruso; Luis Miguel Garcia-Segura; Roberto Cosimo Melcangi

Multiple sclerosis is a chronic inflammatory disease affecting the central nervous system. As reported by clinical observations, variation in hormonal levels might alter disease susceptibility and progression. Specifically, decreased levels of testosterone in males are reported to be permissive for disease onset. Accordingly, testosterone seems to exert protective effects in experimental autoimmune encephalomyelitis (EAE). In this context, it is important to highlight that testosterone is further metabolized into 17ß-estradiol or dihydrotestosterone (DHT). In this study, we aimed to explore the protective effects of DHT treatment in EAE Dark Agouti rats (i.e. an experimental model showing a protracted relapsing EAE). Data obtained 45 days after EAE induction showed that DHT exerts a beneficial effect on clinical scores, coupled with decreased gliosis (i.e. glial fibrillary acidic protein and major histocompatibility complex of class II staining) and inflammation (i.e. translocator protein 18 kDa, interleukin-1ß, Toll-like receptor 4 and nuclear factor-κB expression) in the spinal cord. Moreover, parameters linked to oxidative stress and tissue damage, like thiobarbituric acid-reactive substance levels and Bcl-2-associated X protein expression, and to mitochondrial activity (i.e. content of mitochondrial DNA and proteins), were improved after DHT administration. This neuroactive steroid may be further metabolized into 3a- or 3ß-diol. However, assessment of the levels of these metabolites after DHT treatment seems to suggest that the protective effects observed here are due to DHT itself. Altogether, the present results indicate that DHT was effective in reducing the severity of chronic EAE and, consequently, may represent an interesting perspective for multiple sclerosis treatment.

Collaboration


Dive into the Roberta Rigolio's collaboration.

Top Co-Authors

Avatar

Guido Cavaletti

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Gabriella Nicolini

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Giovanni Tredici

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar

Alessia Chiorazzi

University of Milano-Bicocca

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge