Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Bernardoni is active.

Publication


Featured researches published by Roberto Bernardoni.


The EMBO Journal | 1998

POSITIVE AUTOREGULATION OF THE GLIAL PROMOTING FACTOR GLIDE/GCM

Alita A. Miller; Roberto Bernardoni; Angela Giangrande

Fly gliogenesis depends on the glial‐cell‐deficient/glial‐cell‐missing (glide/gcm) transcription factor. glide/gcm expression is necessary and sufficient to induce the glial fate within and outside the nervous system, indicating that the activity of this gene must be tightly regulated. The current model is that glide/gcm activates the glial fate by inducing the expression of glial‐specific genes that are required to maintain such a fate. Previous observations on the null glide/gcmN7‐4 allele evoked the possibility that another role of glide/gcm might be to maintain and/or amplify its own expression. Here we show that glide/gcm does positively autoregulate in vitro and in vivo, and that the glide/gcmN7‐4 protein is not able to do so. We thereby provide the first direct evidence of both a target and a regulator of glide/gcm. Our data also demonstrate that glide/gcm transcription is regulated at two distinct steps: initiation, which is glide/gcm‐independent, and maintenance, which requires glide/gcm. Interestingly, we have found that autoregulation requires the activity of additional cell‐specific cofactors. The present results suggest transcriptional autoregulation is a mechanism for glial fate induction.


Cancer Research | 2011

A SP1/MIZ1/MYCN Repression Complex Recruits HDAC1 at the TRKA and p75NTR Promoters and Affects Neuroblastoma Malignancy by Inhibiting the Cell Response to NGF

Nunzio Iraci; Daniel Diolaiti; Antonella Papa; Antonio Porro; Emanuele Valli; Samuele Gherardi; Steffi Herold; Martin Eilers; Roberto Bernardoni; Giuliano Della Valle; Giovanni Perini

Neuroblastoma is the most common extracranial solid tumor of childhood. One important factor that predicts a favorable prognosis is the robust expression of the TRKA and p75NTR neurotrophin receptor genes. Interestingly, TRKA and p75NTR expression is often attenuated in aggressive MYCN-amplified tumors, suggesting a causal link between elevated MYCN activity and the transcriptional repression of TRKA and p75NTR, but the precise mechanisms involved are unclear. Here, we show that MYCN acts directly to repress TRKA and p75NTR gene transcription. Specifically, we found that MYCN levels were critical for repression and that MYCN targeted proximal/core promoter regions by forming a repression complex with transcription factors SP1 and MIZ1. When bound to the TRKA and p75NTR promoters, MYCN recruited the histone deacetylase HDAC1 to induce a repressed chromatin state. Forced re-expression of endogenous TRKA and p75NTR with exposure to the HDAC inhibitor TSA sensitized neuroblastoma cells to NGF-mediated apoptosis. By directly connecting MYCN to the repression of TRKA and p75NTR, our findings establish a key pathway of clinical pathogenicity and aggressiveness in neuroblastoma.


Journal of Molecular Neuroscience | 2005

Characterization of the signaling pathway downstream p75 neurotrophin receptor involved in β-amyloid peptide-dependent cell death

Claudio Costantini; Filippo Rossi; Elena Formaggio; Roberto Bernardoni; Daniela Cecconi; Vittorina Della-Bianca

The accumulation of β-amyloid (Aβ) peptide is a key pathogenic event in Alzheimer’s disease. Previous studies have shown that Aβ peptide can damage neurons by activating the p75 neurotrophin receptor (p75NTR). However, the signaling pathway leading to neuronal cell death is not completely understood. By using a neuroblastoma cell line devoid of neurotrophin receptors and engineered to express either a full-length or a death domain (DD)-truncated form of p75NTR, we demonstrated that Aβ peptide activates the mitogen-activated protein kinases (MAPKs) p38 and c-Jun N-terminal kinase (JNK). We also found that Aβ peptide induces the translocation of nuclear factor-κB (NF-κB). These events depend on the DD of p75NTR. β-Amyloid (Aβ) peptide was found not to be toxic when the above interactors were inhibited, indicating that they are required for Aβ-induced neuronal cell death. p75 neurotrophin receptor (p75NTR)-expressing cells became resistant to Aβ toxicity when transfected with dominant-negative mutants of MAPK kinases 3, 4, or 6 (MKK3, MKK4, or MKK6), the inhibitor of κBα, or when treated with chemical inhibitors of p38 and JNK. Furthermore, p75NTR-expressing cells became resistant to Aβ peptide upon transfection with a dominant-negative mutant of p53. These results were obtained in the presence of normal p38 and JNK activation, indicating that p53 acts downstream of p38 and JNK. Finally, we demonstrated that NF-κB activation is dependent on p38 and JNK activation. Therefore, our data suggest a signaling pathway in which Aβ peptide binds to p75NTR and activates p38 and JNK in a DD-dependent manner, followed by NF-κB translocation and p53 activation.


PLOS ONE | 2009

The C-terminal domain of CENP-C displays multiple and critical functions for mammalian centromere formation.

Stefania Trazzi; Giovanni Perini; Roberto Bernardoni; Monica Zoli; Joseph C. Reese; Andrea Musacchio; Giuliano Della Valle

CENP-C is a fundamental component of functional centromeres. The elucidation of its structure-function relationship with centromeric DNA and other kinetochore proteins is critical to the understanding of centromere assembly. CENP-C carries two regions, the central and the C-terminal domains, both of which are important for the ability of CENP-C to associate with the centromeric DNA. However, while the central region is largely divergent in CENP-C homologues, the C-terminal moiety contains two regions that are highly conserved from yeast to humans, named Mif2p homology domains (blocks II and III). The activity of these two domains in human CENP-C is not well defined. In this study we performed a functional dissection of C-terminal CENP-C region analyzing the role of single Mif2p homology domains through in vivo and in vitro assays. By immunofluorescence and Chromatin immunoprecipitation assay (ChIP) we were able to elucidate the ability of the Mif2p homology domain II to target centromere and contact alpha satellite DNA. We also investigate the interactions with other conserved inner kinetochore proteins by means of coimmunoprecipitation and bimolecular fluorescence complementation on cell nuclei. We found that the C-terminal region of CENP-C (Mif2p homology domain III) displays multiple activities ranging from the ability to form higher order structures like homo-dimers and homo-oligomers, to mediate interaction with CENP-A and histone H3. Overall, our findings support a model in which the Mif2p homology domains of CENP-C, by virtue of their ability to establish multiple contacts with DNA and centromere proteins, play a critical role in the structuring of kinethocore chromatin.


Journal of Structural Biology | 2002

In vivo functional dissection of human inner kinetochore protein CENP-C.

Stefania Trazzi; Roberto Bernardoni; Daniel Diolaiti; Valeria Politi; William C. Earnshaw; Giovanni Perini; Giuliano Della Valle

CENP-C is a fundamental component of the inner kinetochore plate and contributes to the formation of functional centromeres in eukaryotic organisms. Recruitment of CENP-C to kinetochore requires other centromere proteins, particularly CENP-A, CENP-H, and CENP-I. However, how CENP-C is correctly localized at the kinetochore is not clearly determined, mainly due to the functional variety of its domains, which hints at a complex recruitment mechanism. Here, by both immunofluorescent labeling and chromatin/immunoprecipitation we could show that human CENP-C contains two distinct domains, one in the central region, between amino acids 426 and 537, and the second one in the carboxyl terminal region, between amino acids 638 and 943, which are both capable of localizing at centromeres and binding alpha-satellite DNA. The presence of two domains that iterate the same function despite being significantly different in their amino acid sequence and structure suggests that CENP-C may target the centromere by establishing multiple contacts with both the DNA and protein constituents of the kinetochore.


Developmental Biology | 2003

Transcriptional regulation of glial cell specification

Gianluca Ragone; V.éronique Van D.e Bor; Sandro Sorrentino; Martial Kammerer; Anne Galy; Annette Schenck; Roberto Bernardoni; Alita A. Miller; Nivedita Roy; Angela Giangrande

Neuronal differentiation relies on proneural factors that also integrate positional information and contribute to the specification of the neuronal type. The molecular pathway triggering glial specification is not understood yet. In Drosophila, all lateral glial precursors and glial-promoting activity have been identified, which provides us with a unique opportunity to dissect the regulatory pathways controlling glial differentiation and specification. Although glial lineages are very heterogeneous with respect to position, time of differentiation, and lineage tree, they all express and require two homologous genes, glial cell deficient/glial cell missing (glide/gcm) and glide2, that act in concert, with glide/gcm constituting the major glial-promoting factor. Here, we show that glial specification resides in glide/gcm transcriptional regulation. The glide/gcm promoter contains lineage-specific elements as well as quantitative and turmoil elements scattered throughout several kilobases. Interestingly, there is no correlation between a specific regulatory element and the type of glial lineage. Thus, the glial-promoting factor acts as a naive switch-on button that triggers gliogenesis in response to multiple pathways converging onto its promoter. Both negative and positive regulation are required to control glide/gcm expression, indicating that gliogenesis is actively repressed in some neural lineages.


Molecular Cancer Research | 2011

c-MYC oncoprotein dictates transcriptional profiles of ATP-binding cassette transporter genes in Chronic Myelogenous Leukemia CD34+ hematopoietic progenitor cells

Antonio Porro; Nunzio Iraci; Simona Soverini; Daniel Diolaiti; Samuele Gherardi; Carolina Terragna; Sandra Durante; Emanuele Valli; Thea Kalebic; Roberto Bernardoni; Chiara Perrod; Michelle Haber; Murray D. Norris; Michele Baccarani; Giovanni Martinelli; Giovanni Perini

Resistance to chemotherapeutic agents remains one of the major impediments to a successful treatment of chronic myeloid leukemia (CML). Misregulation of the activity of a specific group of ATP-binding cassette transporters (ABC) is responsible for reducing the intracellular concentration of drugs in leukemic cells. Moreover, a consistent body of evidence also suggests that ABC transporters play a role in cancer progression beyond the efflux of cytotoxic drugs. Despite a large number of studies that investigated the function of the ABC transporters, little is known about the transcriptional regulation of the ABC genes. Here, we present data showing that the oncoprotein c-MYC is a direct transcriptional regulator of a large set of ABC transporters in CML. Furthermore, molecular analysis carried out in CD34+ hematopoietic cell precursors of 21 CML patients reveals that the overexpression of ABC transporters driven by c-MYC is a peculiar characteristic of the CD34+ population in CML and was not found either in the population of mononuclear cells from which they had been purified nor in CD34+ cells isolated from healthy donors. Finally, we describe how the methylation state of CpG islands may regulate the access of c-MYC to ABCG2 gene promoter, a well-studied gene associated with multidrug resistance in CML, hence, affecting its expression. Taken together, our findings support a model in which c-MYC–driven transcriptional events, combined with epigenetic mechanisms, direct and regulate the expression of ABC genes with possible implications in tumor malignancy and drug efflux in CML. Mol Cancer Res; 9(8); 1054–66. ©2011 AACR.


PLOS Genetics | 2012

Polycomb controls gliogenesis by regulating the transient expression of the Gcm/Glide fate determinant.

Anna Popkova; Roberto Bernardoni; Céline Diebold; Véronique Van De Bor; Bernd Schuettengruber; Inma Gonzalez; Ana Busturia; Giacomo Cavalli; Angela Giangrande

The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups. These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the acquisition of specific cell identity in the nervous system.


Oncotarget | 2016

The human Smoothened inhibitor PF-04449913 induces exit from quiescence and loss of multipotent Drosophila hematopoietic progenitor cells.

Giorgia Giordani; Marilena Barraco; Angela Giangrande; Giovanni Martinelli; Viviana Guadagnuolo; Giorgia Simonetti; Giovanni Perini; Roberto Bernardoni

The efficient treatment of hematological malignancies as Acute Myeloid Leukemia, myelofibrosis and Chronic Myeloid Leukemia, requires the elimination of cancer-initiating cells and the prevention of disease relapse through targeting pathways that stimulate generation and maintenance of these cells. In mammals, inhibition of Smoothened, the key mediator of the Hedgehog signaling pathway, reduces Chronic Myeloid Leukemia progression and propagation. These findings make Smo a candidate target to inhibit maintenance of leukemia-initiating cells. In Drosophila melanogaster the same pathway maintains the hematopoietic precursor cells of the lymph gland, the hematopoietic organ that develops in the larva. Using Drosophila as an in vivo model, we investigated the mode of action of PF-04449913, a small-molecule inhibitor of the human Smo protein. Drosophila larvae fed with PF-04449913 showed traits of altered hematopoietic homeostasis. These include the development of melanotic nodules, increase of circulating hemocytes, the size increase of the lymph gland and accelerated differentiation of blood cells likely due to the exit of multi-potent precursors from quiescence. Importantly, the Smo inhibition can lead to the complete loss of hematopoietic precursors. We conclude that PF-04449913 inhibits Drosophila Smo blocking the Hh signaling pathway and causing the loss of hematopoietic precursor cells. Interestingly, this is the effect expected in patients treated with PF-04449913: number decrease of cancer initiating cells in the bone marrow to reduce the risk of leukemia relapse. Altogether our results indicate that Drosophila comprises a model system for the in vivo study of molecules that target evolutionary conserved pathways implicated in human hematological malignancies.


Advances in Experimental Medicine and Biology | 1999

Role and mechanism of action of glial cell deficient/glial cell missing (glide/gcm), the fly glial promoting factor.

Alita A. Miller; Roberto Bernardoni; C. Hindelang; Martial Kammerer; Sandro Sorrentino; V. Van de Bor; Angela Giangrande

The nervous system consists of two main cell types: neurons, which form the intricate network that processes and transmits information, and glial cells, which are nestled within and around the neurons. Although neurons are responsible for the primary function of the system, glial cells perform a myriad of functions essential to its health and maintenance. In addition to their general role as insulators, they are also involved in the control of neuronal development, proliferation, and survival, as well as the regulation of extracellular ionic homeostasis and neurotransmitters (Barres, 1991; Masu et al., 1993; Ebens et al., 1993; Buchanan and Benzer, 1993; Reynold and Woolf, 1993; Xiong and Montell, 1995; Auld et al., 1995). One of the most intriguing observations in neurobiology is that these two cell types, which play such different, yet interdependent roles, often arise from a single, common precursor over the course of development (for reviews, see Anderson, 1989, 1995; McConnell, 1991; Doe and Technau, 1993; Jan and Jan, 1994; Giangrande, 1996). How is the cell fate choice made between neurons and glial cells in the developing nervous system?

Collaboration


Dive into the Roberto Bernardoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge