Roberto Boggio
European Institute of Oncology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Boggio.
Current Opinion in Microbiology | 2006
Roberto Boggio; Susanna Chiocca
Since its discovery in 1997, SUMO (small ubiquitin-like modifier) has been implicated in a range of activities, indicating that this protein is as important in the cell as ubiquitin is. Although it can function throughout the cell, it appears to be involved more in nuclear functions. The growing list of substrates that are covalently modified by SUMO includes many viral proteins; SUMO appears to facilitate viral infection of cells, making it a possible target for antiviral therapies. It therefore is important to understand how viruses manipulate the cellular sumoylation system and how sumoylation affects viral functions.
EMBO Reports | 2002
Riccardo Colombo; Roberto Boggio; Christian Seiser; Giulio Draetta; Susanna Chiocca
The adenovirus early gene product Gam1 is crucial for virus replication and induces certain cellular genes by inactivating histone deacetylase 1 (HDAC1). We demonstrate that Gam1 (i) destroys promyelocitic leukemia nuclear bodies, (ii) delocalizes SUMO‐1 into the cytoplasm and (iii) influences the SUMO‐1 pathway. In addition, we show that Gam1 counteracts HDAC1 sumoylation both in vivo and in vitro. Sumoylation of HDAC1 does not seem to be absolutely required for HDAC1 biological activity but is part of a complex regulatory circuit that also includes phosphorylation of the deacetylase. Our data demonstrate that Gam1 is a viral protein that can affect simultaneously two signaling pathways: sumoylation and acetylation.
Journal of Clinical Investigation | 2015
Edward J. Wild; Roberto Boggio; Douglas R. Langbehn; Nicola J. Robertson; Salman Haider; James R. Miller; Henrik Zetterberg; Blair R. Leavitt; Rainer Kuhn; Sarah J. Tabrizi; Douglas Macdonald; Andreas Weiss
BACKGROUND Quantification of disease-associated proteins in the cerebrospinal fluid (CSF) has been critical for the study and treatment of several neurodegenerative disorders; however, mutant huntingtin protein (mHTT), the cause of Huntingtons disease (HD), is at very low levels in CSF and, to our knowledge, has never been measured previously. METHODS We developed an ultrasensitive single-molecule counting (SMC) mHTT immunoassay that was used to quantify mHTT levels in CSF samples from individuals bearing the HD mutation and from control individuals in 2 independent cohorts. RESULTS This SMC mHTT immunoassay demonstrated high specificity for mHTT, high sensitivity with a femtomolar detection threshold, and a broad dynamic range. Analysis of the CSF samples showed that mHTT was undetectable in CSF from all controls but quantifiable in nearly all mutation carriers. The mHTT concentration in CSF was approximately 3-fold higher in patients with manifest HD than in premanifest mutation carriers. Moreover, mHTT levels increased as the disease progressed and were associated with 5-year onset probability. The mHTT concentration independently predicted cognitive and motor dysfunction. Furthermore, the level of mHTT was associated with the concentrations of tau and neurofilament light chain in the CSF, suggesting a neuronal origin for the detected mHTT. CONCLUSIONS We have demonstrated that mHTT can be quantified in CSF from HD patients using the described SMC mHTT immunoassay. Moreover, the level of mHTT detected is associated with proximity to disease onset and diminished cognitive and motor function. The ability to quantify CSF mHTT will facilitate the study of HD, and mHTT quantification could potentially serve as a biomarker for the development and testing of experimental mHTT-lowering therapies for HD. TRIAL REGISTRATION Not applicable. FUNDING CHDI Foundation Inc.; Medical Research Council (MRC) UK; National Institutes for Health Research (NIHR); Rosetrees Trust; Swedish Research Council; and Knut and Alice Wallenberg Foundation.
Journal of Biological Chemistry | 2007
Roberto Boggio; Alfonso Passafaro; Susanna Chiocca
SUMO-1 (small ubiquitin-related modifier-1) is a ubiquitin-like family member that is conjugated to its substrates through three discrete enzymatic steps, activation (involving the E1 enzyme (SAE1/SAE2)), conjugation (involving the E2 enzyme), and substrate modification (through the cooperation of the E2 and E3 protein ligases). The adenoviral protein Gam1 inactivates E1, both in vitro and in vivo, followed by SAE1/SAE2 degradation. We have shown here that Gam1 possesses a C-terminal SOCS domain that allows its interaction with two cellular cullin RING (really interesting new gene) ubiquitin ligases. We demonstrate that Gam1 is necessary for the recruitment of SAE1/SAE2 into Cul2/5-EloB/C-Roc1 ubiquitin ligase complexes and for subsequent SAE1 ubiquitylation and degradation. The degradation of SAE2 is not tightly related to Gam1 but is a consequent effect of SAE1 disappearance. These results reveal the mechanism by which a viral protein inactivates and subsequently degrades an essential cellular enzyme, arresting a key regulatory pathway.
Current Biology | 2002
Susanna Chiocca; Vladislav Kurtev; Riccardo Colombo; Roberto Boggio; M. Teresa Sciurpi; Gerald Brosch; Christian Seiser; Giulio Draetta; Matt Cotten
Gam1 is an early gene product of the avian adenovirus CELO and is essential for viral replication. Gam1 has no homology to any known proteins; however, its early expression and nuclear localization suggest that the protein functions to influence transcription in the infected cell. A determinant of eukaryotic gene expression is the acetylation state of chromosomal histones and other nuclear proteins. We find that Gam1 expression increases the level of transcription from a variety of eukaryotic promoters, similar to the effect of treating cells with the histone deacetylase (HDAC) inhibitor trichostatin A (TSA ). We show that Gam1 can effectively inhibit histone deacetylation by HDAC1 and that Gam1 binds to HDAC1 both in vitro and in vivo. A CELO virus lacking Gam1 (CELOdG) is replication defective, but the defect can be overcome by either expressing an interfering HDAC1 mutant or by treating infected cells with TSA. The identification of a viral early gene product having the specific function of binding and inactivating HDAC suggests that deacetylase complexes play an important role in limiting early gene expression from invading viruses.
PLOS ONE | 2008
Eva Madi Riising; Roberto Boggio; Susanna Chiocca; Kristian Helin; Diego Pasini
Background The Polycomb Repressive Complex 2 (PRC2) functions as a transcriptional repressor through a mechanism that involves methylation of Histone H3 at lysine 27. The PRC2 complex activity is essential for cellular proliferation, development, and cell fate decisions. PRC2 target genes include important regulators of development and proliferation as well as tumor suppressor genes. Consistent with this, the activity of several Polycomb group (PcG) proteins is deregulated in human cancer suggesting an important role for PcGs in tumor development. Whereas the downstream functions of PcGs are well characterized, the mechanisms of their recruitment to target genes and the regulation of their activity are not fully understood. Principal Findings Here we show that the two PRC2 components SUZ12 and EZH2 are sumoylated in vitro and in vivo. Among several putative sumoylation sites we have mapped the major site of SUZ12 sumoylation. Furthermore, we show that SUZ12 interacts with the E2-conjugating enzyme UBC9 both in vitro and in vivo and that mutation of the SUZ12 sumoylation site does not abolish this binding. Finally, we provide evidence that the E3-ligase PIASXβ interacts and enhances the sumoylation of SUZ12 in vivo suggesting that PIASXβ could function as an E3-ligase for SUZ12. Conclusions Taken together, our data identify sumoylation as a novel post-translational modification of components of the PRC2 complex, which could suggest a potential new mechanism to modulate PRC2 repressive activity. Further work aimed to identify the physiological conditions for these modifications will be required to understand the role of SUZ12 and EZH2 sumoylation in PcG-mediated epigenetic regulation of transcription.
Cell Cycle | 2005
Roberto Boggio; Susanna Chiocca
Post-translational modifications of proteins have critical roles in many cellular processes because they can cause rapid changes in the functions of pre-existing proteins, multiprotein complexes and subcellular structures. Sumoylation, a ubiquitin-like dynamic and reversible post-translational modification system, is an enzymatic cascade leading to the covalent attachment of SUMO to it target proteins. This modification involves three steps and different enzymes: SUMO-activating enzyme E1 (SAE1/SAE2), SUMO-conjugating enzyme E2 (UBC9), SUMO ligases E3s, and SUMO cleaving enzymes. Although the identification of SUMO-modified substrates has progressed rapidly, the biological function of SUMO and regulation of SUMO conjugation are still not well understood. Some viral proteins have been identified as substrates for SUMO modification as well as altering the sumoylation status of host cell proteins. We have been studying an unusual adenoviral protein, Gam1, a strong and global transcriptional activator of both viral and cellular genes that inactivates HDAC1. We have recently expanded the known functions of Gam1 by demonstrating that Gam1 also inhibits the SUMO pathway by interfering with the activity of E1 heterodimer (SAE1/SAE2), leading to the accumulation of SUMO-unmodified substrates. Our data provides a clear example of the effects of a viral infection on host sumoylation and supports the idea that viruses have multifunctional protein that can target essential biochemical pathways.
PLOS ONE | 2014
Valentina Fodale; Natalie C. Kegulian; Margherita Verani; Cristina Cariulo; Lucia Azzollini; Lara Petricca; Manuel Daldin; Roberto Boggio; Alessandro Padova; Rainer Kuhn; Robert Pacifici; Douglas Macdonald; Ryan C. Schoenfeld; Hyunsun Park; J. Mario Isas; Ralf Langen; Andreas Weiss; Andrea Caricasole
Background In Huntingtons disease, expansion of a CAG triplet repeat occurs in exon 1 of the huntingtin gene (HTT), resulting in a protein bearing>35 polyglutamine residues whose N-terminal fragments display a high propensity to misfold and aggregate. Recent data demonstrate that polyglutamine expansion results in conformational changes in the huntingtin protein (HTT), which likely influence its biological and biophysical properties. Developing assays to characterize and measure these conformational changes in isolated proteins and biological samples would advance the testing of novel therapeutic approaches aimed at correcting mutant HTT misfolding. Time-resolved Förster energy transfer (TR-FRET)-based assays represent high-throughput, homogeneous, sensitive immunoassays widely employed for the quantification of proteins of interest. TR-FRET is extremely sensitive to small distances and can therefore provide conformational information based on detection of exposure and relative position of epitopes present on the target protein as recognized by selective antibodies. We have previously reported TR-FRET assays to quantify HTT proteins based on the use of antibodies specific for different amino-terminal HTT epitopes. Here, we investigate the possibility of interrogating HTT protein conformation using these assays. Methodology/Principal Findings By performing TR-FRET measurements on the same samples (purified recombinant proteins or lysates from cells expressing HTT fragments or full length protein) at different temperatures, we have discovered a temperature-dependent, reversible, polyglutamine-dependent conformational change of wild type and expanded mutant HTT proteins. Circular dichroism spectroscopy confirms the temperature and polyglutamine-dependent change in HTT structure, revealing an effect of polyglutamine length and of temperature on the alpha-helical content of the protein. Conclusions/Significance The temperature- and polyglutamine-dependent effects observed with TR-FRET on HTT proteins represent a simple, scalable, quantitative and sensitive assay to identify genetic and pharmacological modulators of mutant HTT conformation, and potentially to assess the relevance of conformational changes during onset and progression of Huntingtons disease.
Journal of Huntington's disease | 2017
Valentina Fodale; Roberto Boggio; Manuel Daldin; Cristina Cariulo; Maria Carolina Spiezia; Lauren M. Byrne; Blair R. Leavitt; Edward J. Wild; Douglas A. MacDonald; Andreas Weiss; Alberto Bresciani
Background: The measurement of disease-relevant biomarkers has become a major component of clinical trial design, but in the absence of rigorous clinical and analytical validation of detection methodology, interpretation of results may be misleading. In Huntington’s disease (HD), measurement of the concentration of mutant huntingtin protein (mHTT) in cerebrospinal fluid (CSF) of patients may serve as both a disease progression biomarker and a pharmacodynamic readout for HTT-lowering therapeutic approaches. We recently published the quantification of mHTT levels in HD patient CSF by a novel ultrasensitive immunoassay-based technology and here analytically validate it for use. Objective: This work aims to analytically and clinically validate our ultrasensitive assay for mHTT measurement in human HD CSF, for application as a pharmacodynamic biomarker of CNS mHTT lowering in clinical trials. Methods: The single molecule counting (SMC) assay is an ultrasensitive bead-based immunoassay where upon specific recognition, dye-labeled antibodies are excited by a confocal laser and emit fluorescent light as a readout. The detection of mHTT by this technology was clinically validated following established Food and Drug Administration and European Medicine Agency guidelines. Results: The SMC assay was demonstrated to be accurate, precise, specific, and reproducible. While no matrix influence was detected, a list of interfering substances was compiled as a guideline for proper collection and storage of patient CSF samples. In addition, a set of recommendations on result interpretation is provided. Conclusions: This SMC assay is a robust and ultrasensitive method for the relative quantification of mHTT in human CSF.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Cristina Cariulo; Lucia Azzollini; Margherita Verani; Paola Martufi; Roberto Boggio; Anass Chiki; Sean M. Deguire; Marta Cherubini; Silvia Ginés; J. Lawrence Marsh; Paola Conforti; Iolanda Santimone; Ferdinando Squitieri; Hilal A. Lashuel; Lara Petricca; Andrea Caricasole
Significance The findings in this manuscript report on the identification of a posttranslational modification in the huntingtin protein (phosphorylation on residue T3 in the N17 region of the protein), which can revert the conformational effects of the Huntington’s disease (HD) mutation itself on the huntingtin protein and inhibit its aggregation properties in vitro. Using the first ultrasensitive immunoassay for a posttranslational modification of huntingtin protein, we demonstrate that pT3 levels are decreased in mutant huntingtin in preclinical models as well as in clinically relevant samples from HD patients. These findings are of high significance to Huntington’s disease biology, provide insights into mechanisms of Huntington’s disease pathogenesis, and open new opportunities for the development of therapeutics and diagnostics for Huntington’s disease. Posttranslational modifications can have profound effects on the biological and biophysical properties of proteins associated with misfolding and aggregation. However, their detection and quantification in clinical samples and an understanding of the mechanisms underlying the pathological properties of misfolding- and aggregation-prone proteins remain a challenge for diagnostics and therapeutics development. We have applied an ultrasensitive immunoassay platform to develop and validate a quantitative assay for detecting a posttranslational modification (phosphorylation at residue T3) of a protein associated with polyglutamine repeat expansion, namely Huntingtin, and characterized its presence in a variety of preclinical and clinical samples. We find that T3 phosphorylation is greatly reduced in samples from Huntington’s disease models and in Huntington’s disease patients, and we provide evidence that bona-fide T3 phosphorylation alters Huntingtin exon 1 protein conformation and aggregation properties. These findings have significant implications for both mechanisms of disease pathogenesis and the development of therapeutics and diagnostics for Huntington’s disease.