Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alberto Bresciani is active.

Publication


Featured researches published by Alberto Bresciani.


Bioorganic & Medicinal Chemistry Letters | 2011

Identification of a series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as potent smoothened antagonist hedgehog pathway inhibitors.

Jesus M. Ontoria; Laura Llauger Bufi; Caterina Torrisi; Alberto Bresciani; Claudia Giomini; Michael Rowley; Sergio Serafini; Hu Bin; Wu Hao; Christian Steinkühler; Philip Jones

The Hedgehog (Hh-) signalling pathway is a key developmental pathway and there is a growing body of evidence showing that this pathway is aberrantly reactivated in a number of human tumors. Novel agents capable of inhibiting this pathway are sought, and an entirely novel series of smoothened (Smo) antagonists capable of inhibiting the pathway have been identified through uHTS screening. Extensive exploration of the scaffold identified the key functionalities necessary for potency, enabling potent nanomolar Smo antagonists like 91 and 94 to be developed. Optimization resulted in the most advanced compounds displaying low serum shift, clean off-targets profile, and moderate clearance in both rats and dogs. These compounds are valuable tools with which to probe the biology of the Hh-pathway.


Bioorganic & Medicinal Chemistry Letters | 2011

N-(2-alkylaminoethyl)-4-(1,2,4-oxadiazol-5-yl)piperazine-1-carboxamides as highly potent smoothened antagonists.

Ester Muraglia; Jesus M. Ontoria; Danila Branca; Gabriella Dessole; Alberto Bresciani; Massimiliano Fonsi; Claudio Giuliano; Laura Llauger Bufi; Edith Monteagudo; Maria Cecilia Palumbi; Caterina Torrisi; Michael Rowley; Christian Steinkühler; Philip Jones

Smoothened (Smo) antagonists are emerging as new therapies for the treatment of neoplasias with aberrantly reactivated hedgehog (Hh) signaling pathway. A novel series of 4-[3-(quinolin-2-yl)-1,2,4-oxadiazol-5-yl]piperazinyl ureas as smoothened antagonists was recently described, herein the series has been further optimized through the incorporation of a basic amine into the urea. This development resulted in identification of some exceptionally potent smoothened antagonists with low serum shifts, however, reductive ring opening on the 1,2,4-oxadiazole in rats limits the applicability of these compounds in in vivo studies.


PLOS Neglected Tropical Diseases | 2015

Development and Validation of a Luminescence-based, Medium-Throughput Assay for Drug Screening in Schistosoma mansoni

Cristiana Lalli; Alessandra Guidi; Nadia Gennari; Sergio Altamura; Alberto Bresciani; Giovina Ruberti

Background Schistosomiasis, one of the world’s greatest neglected tropical diseases, is responsible for over 280,000 human deaths per annum. Praziquantel, developed in the 1970s, has high efficacy, excellent tolerability, few and transient side effects, simple administration procedures and competitive cost and it is currently the only recommended drug for treatment of human schistosomiasis. The use of a single drug to treat a population of over 200 million infected people appears particularly alarming when considering the threat of drug resistance. Quantitative, objective and validated methods for the screening of compound collections are needed for the discovery of novel anti-schistosomal drugs. Methodology/Principal Findings The present work describes the development and validation of a luminescence-based, medium-throughput assay for the detection of schistosomula viability through quantitation of ATP, a good indicator of metabolically active cells in culture. This validated method is demonstrated to be fast, highly reliable, sensitive and automation-friendly. The optimized assay was used for the screening of a small compound library on S. mansoni schistosomula, showing that the proposed method is suitable for a medium-throughput semi-automated screening. Interestingly, the pilot screening identified hits previously reported to have some anti-parasitic activity, further supporting the validity of this assay for anthelminthic drug discovery. Conclusions The developed and validated schistosomula viability luminescence-based assay was shown to be successful and suitable for the identification of novel compounds potentially exploitable in future schistosomiasis therapies.


ACS Medicinal Chemistry Letters | 2016

Discovery of a Selective Series of Inhibitors of Plasmodium falciparum HDACs

Jesus M. Ontoria; Giacomo Paonessa; Simona Ponzi; Federica Ferrigno; Emanuela Nizi; Ilaria Biancofiore; Savina Malancona; Rita Graziani; David Roberts; Paul Willis; Alberto Bresciani; Nadia Gennari; Ottavia Cecchetti; Edith Monteagudo; Maria Vittoria Orsale; Maria Veneziano; Annalise Di Marco; Antonella Cellucci; Ralph Laufer; Sergio Altamura; Vincenzo Summa; Steven Harper

The identification of a new series of P. falciparum growth inhibitors is described. Starting from a series of known human class I HDAC inhibitors a SAR exploration based on growth inhibitory activity in parasite and human cells-based assays led to the identification of compounds with submicromolar inhibition of P. falciparum growth (EC50 < 500 nM) and good selectivity over the activity of human HDAC in cells (up to >50-fold). Inhibition of parasital HDACs as the mechanism of action of this new class of selective growth inhibitors is supported by hyperacetylation studies.


Archives of Biochemistry and Biophysics | 2017

Nuclear factor (erythroid-derived 2)-like 2 (NRF2) drug discovery: Biochemical toolbox to develop NRF2 activators by reversible binding of Kelch-like ECH-associated protein 1 (KEAP1)

Alberto Bresciani; Antonino Missineo; Mariana Gallo; Mauro Cerretani; Paola Fezzardi; Licia Tomei; Daniel O. Cicero; Sergio Altamura; Alessia Santoprete; Raffaele Ingenito; Elisabetta Bianchi; Robert Pacifici; Celia Dominguez; Ignacio Munoz-Sanjuan; Steven Harper; Leticia Toledo-Sherman; Larry Park

Mechanisms that activate innate antioxidant responses, as a way to mitigate oxidative stress at the site of action, hold much therapeutic potential in diseases, such as Parkinsons disease, Alzheimers disease and Huntingtons disease, where the use of antioxidants as monotherapy has not yielded positive results. The nuclear factor NRF2 is a transcription factor whose activity upregulates the expression of cell detoxifying enzymes in response to oxidative stress. NRF2 levels are modulated by KEAP1, a sensor of oxidative stress. KEAP1 binds NRF2 and facilitates its ubiquitination and subsequent degradation. Recently, compounds that reversibly disrupt the NRF2-KEAP1 interaction have been described, opening the field to a new era of safer NRF2 activators. This paper describes a set of new, robust and informative biochemical assays that enable the selection and optimization of non-covalent KEAP1 binders. These include a time-resolved fluorescence resonance energy transfer (TR-FRET) primary assay with high modularity and robustness, a surface plasmon resonance (SPR) based KEAP1 direct binding assay that enables the quantification and analysis of full kinetic binding parameters and finally a 1H-15N heteronuclear single quantum coherence (HSQC) NMR assay suited to study the interaction surface of KEAP1 with residue-specific information to validate the interaction of ligands in the KEAP1 binding site.


PLOS Neglected Tropical Diseases | 2016

Discovery and Characterization of Novel Anti-schistosomal Properties of the Anti-anginal Drug, Perhexiline and Its Impact on Schistosoma mansoni Male and Female Reproductive Systems.

Alessandra Guidi; Cristiana Lalli; Emerald Perlas; Giulia Bolasco; Martina Nibbio; Edith Monteagudo; Alberto Bresciani; Giovina Ruberti

Background Schistosomiasis, one of the world’s greatest human neglected tropical diseases, is caused by parasitic trematodes of the genus Schistosoma. A unique feature of schistosome biology is that the induction of sexual maturation as well as the maintenance of the differentiation status of female reproductive organs and egg production, necessary for both disease transmission and pathogenesis, are strictly dependent on the male. The treatment and most control initiatives of schistosomiasis rely today on the long-term application of a single drug, praziquantel (PZQ), mostly by campaigns of mass drug administration. PZQ, while very active on adult parasites, has much lower activity against juvenile worms. Monotherapy also favors the selection of drug resistance and, therefore, new drugs are urgently needed. Methods and Findings Following the screening of a small compound library with an ATP-based luminescent assay on Schistosoma mansoni schistosomula, we here report the identification and characterization of novel antischistosomal properties of the anti-anginal drug perhexiline maleate (PHX). By phenotypic worm survival assays and confocal microscopy studies we show that PHX, in vitro, has a marked lethal effect on all S. mansoni parasite life stages (newly transformed schistosomula, juvenile and adult worms) of the definitive host. We further demonstrate that sub-lethal doses of PHX significantly impair egg production and lipid depletion within the vitellarium of adult female worms. Moreover, we highlighted tegumental damage in adult male worms and remarkable reproductive system alterations in both female and male adult parasites. The in vivo study in S. mansoni-patent mice showed a notable variability of worm burdens in the individual experiments, with an overall minimal schistosomicidal effect upon PHX treatment. The short PHX half-life in mice, together with its very high rodent plasma proteins binding could be the cause of the modest efficacy of PHX in the schistosomiasis murine model. Conclusions/Significance Overall, our data indicate that PHX could represent a promising starting point for novel schistosomicidal drug discovery programmes.


Human Molecular Genetics | 2016

Vitamin B12 ameliorates the phenotype of a mouse model of DiGeorge syndrome

Gabriella Lania; Alberto Bresciani; Monica Bisbocci; Alessandra Francone; Vincenza Colonna; Sergio Altamura; Antonio Baldini

Abstract Pathological conditions caused by reduced dosage of a gene, such as gene haploinsufficiency, can potentially be reverted by enhancing the expression of the functional allele. In practice, low specificity of therapeutic agents, or their toxicity reduces their clinical applicability. Here, we have used a high throughput screening (HTS) approach to identify molecules capable of increasing the expression of the gene Tbx1, which is involved in one of the most common gene haploinsufficiency syndromes, the 22q11.2 deletion syndrome. Surprisingly, we found that one of the two compounds identified by the HTS is the vitamin B12. Validation in a mouse model demonstrated that vitamin B12 treatment enhances Tbx1 gene expression and partially rescues the haploinsufficiency phenotype. These results lay the basis for preclinical and clinical studies to establish the effectiveness of this drug in the human syndrome.


PLOS ONE | 2018

Quantifying autophagy using novel LC3B and p62 TR-FRET assays

Alberto Bresciani; Maria Carolina Spiezia; Roberto Boggio; Cristina Cariulo; Anja Nordheim; Roberta Altobelli; Kirsten Kuhlbrodt; Celia Dominguez; Ignacio Munoz-Sanjuan; John Wityak; Valentina Fodale; Deanna Marchionini; Andreas Weiss

Autophagy is a cellular mechanism that can generate energy for cells or clear misfolded or aggregated proteins, and upregulating this process has been proposed as a therapeutic approach for neurodegenerative diseases. Here we describe a novel set of LC3B-II and p62 time-resolved fluorescence resonance energy transfer (TR-FRET) assays that can detect changes in autophagy in the absence of exogenous labels. Lipidated LC3 is a marker of autophagosomes, while p62 is a substrate of autophagy. These assays can be employed in high-throughput screens to identify novel autophagy upregulators, and can measure autophagy changes in cultured cells or tissues after genetic or pharmacological interventions. We also demonstrate that different cells exhibit varying autophagic responses to pharmacological interventions. Overall, it is clear that a battery of readouts is required to make conclusions about changes in autophagy.


PLOS Neglected Tropical Diseases | 2017

Discovery by organism based high-throughput screening of new multi-stage compounds affecting Schistosoma mansoni viability, egg formation and production

Alessandra Guidi; Cristiana Lalli; Roberto Gimmelli; Emanuela Nizi; Matteo Andreini; Nadia Gennari; Fulvio Saccoccia; Steven Harper; Alberto Bresciani; Giovina Ruberti

Schistosomiasis, one of the most prevalent neglected parasitic diseases affecting humans and animals, is caused by the Platyhelminthes of the genus Schistosoma. Schistosomes are the only trematodes to have evolved sexual dimorphism and the constant pairing with a male is essential for the sexual maturation of the female. Pairing is required for the full development of the two major female organs, ovary and vitellarium that are involved in the production of different cell types such as oocytes and vitellocytes, which represent the core elements of the whole egg machinery. Sexually mature females can produce a large number of eggs each day. Due to the importance of egg production for both life cycle and pathogenesis, there is significant interest in the search for new strategies and compounds not only affecting parasite viability but also egg production. Here we use a recently developed high-throughput organism-based approach, based on ATP quantitation in the schistosomula larval stage of Schistosoma mansoni for the screening of a large compound library, and describe a pharmacophore-based drug selection approach and phenotypic analyses to identify novel multi-stage schistosomicidal compounds. Interestingly, worm pairs treated with seven of the eight compounds identified show a phenotype characterized by defects in eggshell assemblage within the ootype and egg formation with degenerated oocytes and vitelline cells engulfment in the uterus and/or oviduct. We describe promising new molecules that not only impair the schistosomula larval stage but also impact juvenile and adult worm viability and egg formation and production in vitro.


SLAS DISCOVERY: Advancing Life Sciences R&D | 2018

Development of a Broadly Applicable Assay for Measurement of Glycan-Directed Enzymatic Activity:

Alberto Bresciani; Ottavia Cecchetti; Antonino Missineo; Pier Giorgio Pacifici; Licia Tomei; Steven Rodems

Glycosylation is a key posttranslational modification that tags protein to membranes, organelles, secretory pathways, and degradation. Aberrant protein glycosylation is present both in acquired diseases, such as cancer and neurodegeneration, and in congenital disorders of glycosylation (CDGs). Consequently, the ability to interrogate the activity of enzymes that can modify protein glycan moieties is key for drug discovery projects aimed at finding modulators of these enzymes. To date, low-throughput technologies such as SDS-PAGE and mass spectrometry have been used, which are not suitable for compound screening in drug discovery. In the present work, a broadly applicable time-resolved fluorescence resonance energy transfer (TR-FRET) assay was developed that can determine the activity of endoglycosidase enzymes in high-throughput formats. The assay was validated using PNGaseF and EndoH as tool deglycosylases. Even though the current setup is based on the recognition of glycans that bind concanavalin A (ConA), the assay concept can be adapted to glycans that bind other lectins.

Collaboration


Dive into the Alberto Bresciani's collaboration.

Top Co-Authors

Avatar

Vincenzo Summa

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge