Roberto Carvalheiro
Sao Paulo State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Carvalheiro.
BMC Genetics | 2013
Yuri T. Utsunomiya; Adriana Santana do Carmo; Roberto Carvalheiro; Haroldo H. R. Neves; Márcia C. Matos; Ludmilla B. Zavarez; Ana M Pérez O’Brien; Johann Sölkner; J. C. McEwan; J.B. Cole; Curtis P. Van Tassell; F.S. Schenkel; Marcos V. G. B. da Silva; Laercio R. Porto Neto; Tad S. Sonstegard; José Fernando Garcia
BackgroundBirth weight (BW) is an economically important trait in beef cattle, and is associated with growth- and stature-related traits and calving difficulty. One region of the cattle genome, located on Bos primigenius taurus chromosome 14 (BTA14), has been previously shown to be associated with stature by multiple independent studies, and contains orthologous genes affecting human height. A genome-wide association study (GWAS) for BW in Brazilian Nellore cattle (Bos primigenius indicus) was performed using estimated breeding values (EBVs) of 654 progeny-tested bulls genotyped for over 777,000 single nucleotide polymorphisms (SNPs).ResultsThe most significant SNP (rs133012258, PGC = 1.34 × 10-9), located at BTA14:25376827, explained 4.62% of the variance in BW EBVs. The surrounding 1 Mb region presented high identity with human, pig and mouse autosomes 8, 4 and 4, respectively, and contains the orthologous height genes PLAG1, CHCHD7, MOS, RPS20, LYN, RDHE2 (SDR16C5) and PENK. The region also overlapped 28 quantitative trait loci (QTLs) previously reported in literature by linkage mapping studies in cattle, including QTLs for birth weight, mature height, carcass weight, stature, pre-weaning average daily gain, calving ease, and gestation length.ConclusionsThis study presents the first GWAS applying a high-density SNP panel to identify putative chromosome regions affecting birth weight in Nellore cattle. These results suggest that the QTLs on BTA14 associated with body size in taurine cattle (Bos primigenius taurus) also affect birth weight and size in zebu cattle (Bos primigenius indicus).
PLOS ONE | 2014
Yuri T. Utsunomiya; Adriana Santana do Carmo; Haroldo H. R. Neves; Roberto Carvalheiro; Márcia C. Matos; Ludmilla B. Zavarez; Pier K. R. K. Ito; Ana M. Pérez O'Brien; Johann Sölkner; Laercio R. Porto-Neto; F.S. Schenkel; J. C. McEwan; J.B. Cole; M. V. G. B. Silva; Curtis P. Van Tassell; Tad S. Sonstegard; José Fernando Garcia
The reproductive performance of bulls has a high impact on the beef cattle industry. Scrotal circumference (SC) is the most recorded reproductive trait in beef herds, and is used as a major selection criterion to improve precocity and fertility. The characterization of genomic regions affecting SC can contribute to the identification of diagnostic markers for reproductive performance and uncover molecular mechanisms underlying complex aspects of bovine reproductive biology. In this paper, we report a genome-wide scan for chromosome segments explaining differences in SC, using data of 861 Nellore bulls (Bos indicus) genotyped for over 777,000 single nucleotide polymorphisms. Loci that excel from the genome background were identified on chromosomes 4, 6, 7, 10, 14, 18 and 21. The majority of these regions were previously found to be associated with reproductive and body size traits in cattle. The signal on chromosome 14 replicates the pleiotropic quantitative trait locus encompassing PLAG1 that affects male fertility in cattle and stature in several species. Based on intensive literature mining, SP4, MAGEL2, SH3RF2, PDE5A and SNAI2 are proposed as novel candidate genes for SC, as they affect growth and testicular size in other animal models. These findings contribute to linking reproductive phenotypes to gene functions, and may offer new insights on the molecular biology of male fertility.
Genetics Selection Evolution | 2014
Haroldo H. R. Neves; Roberto Carvalheiro; Ana M Pérez O’Brien; Yuri T. Utsunomiya; Adriana Santana do Carmo; F.S. Schenkel; Johann Sölkner; J. C. McEwan; Curtis P. Van Tassell; J.B. Cole; Marcos V. G. B. da Silva; Sandra Aidar de Queiroz; Tad S. Sonstegard; José Fernando Garcia
BackgroundNellore cattle play an important role in beef production in tropical systems and there is great interest in determining if genomic selection can contribute to accelerate genetic improvement of production and fertility in this breed. We present the first results of the implementation of genomic prediction in a Bos indicus (Nellore) population.MethodsInfluential bulls were genotyped with the Illumina Bovine HD chip in order to assess genomic predictive ability for weight and carcass traits, gestation length, scrotal circumference and two selection indices. 685 samples and 320 238 single nucleotide polymorphisms (SNPs) were used in the analyses. A forward-prediction scheme was adopted to predict the genomic breeding values (DGV). In the training step, the estimated breeding values (EBV) of bulls were deregressed (dEBV) and used as pseudo-phenotypes to estimate marker effects using four methods: genomic BLUP with or without a residual polygenic effect (GBLUP20 and GBLUP0, respectively), a mixture model (Bayes C) and Bayesian LASSO (BLASSO). Empirical accuracies of the resulting genomic predictions were assessed based on the correlation between DGV and dEBV for the testing group.ResultsAccuracies of genomic predictions ranged from 0.17 (navel at weaning) to 0.74 (finishing precocity). Across traits, Bayesian regression models (Bayes C and BLASSO) were more accurate than GBLUP. The average empirical accuracies were 0.39 (GBLUP0), 0.40 (GBLUP20) and 0.44 (Bayes C and BLASSO). Bayes C and BLASSO tended to produce deflated predictions (i.e. slope of the regression of dEBV on DGV greater than 1). Further analyses suggested that higher-than-expected accuracies were observed for traits for which EBV means differed significantly between two breeding subgroups that were identified in a principal component analysis based on genomic relationships.ConclusionsBayesian regression models are of interest for future applications of genomic selection in this population, but further improvements are needed to reduce deflation of their predictions. Recurrent updates of the training population would be required to enable accurate prediction of the genetic merit of young animals. The technical feasibility of applying genomic prediction in a Bos indicus (Nellore) population was demonstrated. Further research is needed to permit cost-effective selection decisions using genomic information.
BMC Genetics | 2012
Haroldo H. R. Neves; Roberto Carvalheiro; Sandra Aidar de Queiroz
BackgroundThe availability of high-density panels of SNP markers has opened new perspectives for marker-assisted selection strategies, such that genotypes for these markers are used to predict the genetic merit of selection candidates. Because the number of markers is often much larger than the number of phenotypes, marker effect estimation is not a trivial task. The objective of this research was to compare the predictive performance of ten different statistical methods employed in genomic selection, by analyzing data from a heterogeneous stock mice population.ResultsFor the five traits analyzed (W6W: weight at six weeks, WGS: growth slope, BL: body length, %CD8+: percentage of CD8+ cells, CD4+/ CD8+: ratio between CD4+ and CD8+ cells), within-family predictions were more accurate than across-family predictions, although this superiority in accuracy varied markedly across traits. For within-family prediction, two kernel methods, Reproducing Kernel Hilbert Spaces Regression (RKHS) and Support Vector Regression (SVR), were the most accurate for W6W, while a polygenic model also had comparable performance. A form of ridge regression assuming that all markers contribute to the additive variance (RR_GBLUP) figured among the most accurate for WGS and BL, while two variable selection methods ( LASSO and Random Forest, RF) had the greatest predictive abilities for %CD8+ and CD4+/ CD8+. RF, RKHS, SVR and RR_GBLUP outperformed the remainder methods in terms of bias and inflation of predictions.ConclusionsMethods with large conceptual differences reached very similar predictive abilities and a clear re-ranking of methods was observed in function of the trait analyzed. Variable selection methods were more accurate than the remainder in the case of %CD8+ and CD4+/CD8+ and these traits are likely to be influenced by a smaller number of QTL than the remainder. Judged by their overall performance across traits and computational requirements, RR_GBLUP, RKHS and SVR are particularly appealing for application in genomic selection.
Frontiers in Genetics | 2015
Ludmilla B. Zavarez; Yuri T. Utsunomiya; Adriana Santana do Carmo; Haroldo H. R. Neves; Roberto Carvalheiro; Maja Ferenčaković; Ana M. Pérez O'Brien; Ino Curik; J.B. Cole; Curtis P. Van Tassell; Marcos V. G. B. da Silva; Tad S. Sonstegard; Johann Sölkner; José Fernando Garcia
The use of relatively low numbers of sires in cattle breeding programs, particularly on those for carcass and weight traits in Nellore beef cattle (Bos indicus) in Brazil, has always raised concerns about inbreeding, which affects conservation of genetic resources and sustainability of this breed. Here, we investigated the distribution of autozygosity levels based on runs of homozygosity (ROH) in a sample of 1,278 Nellore cows, genotyped for over 777,000 SNPs. We found ROH segments larger than 10 Mb in over 70% of the samples, representing signatures most likely related to the recent massive use of few sires. However, the average genome coverage by ROH (>1 Mb) was lower than previously reported for other cattle breeds (4.58%). In spite of 99.98% of the SNPs being included within a ROH in at least one individual, only 19.37% of the markers were encompassed by common ROH, suggesting that the ongoing selection for weight, carcass and reproductive traits in this population is too recent to have produced selection signatures in the form of ROH. Three short-range highly prevalent ROH autosomal hotspots (occurring in over 50% of the samples) were observed, indicating candidate regions most likely under selection since before the foundation of Brazilian Nellore cattle. The putative signatures of selection on chromosomes 4, 7, and 12 may be involved in resistance to infectious diseases and fertility, and should be subject of future investigation.
Genetics Selection Evolution | 2012
Haroldo H. R. Neves; Roberto Carvalheiro; Sandra Aidar de Queiroz
BackgroundMany studies have provided evidence of the existence of genetic heterogeneity of environmental variance, suggesting that it could be exploited to improve robustness and uniformity of livestock by selection. However, little is known about the perspectives of such a selection strategy in beef cattle.MethodsA two-step approach was applied to study the genetic heterogeneity of residual variance of weight gain from birth to weaning and long-yearling weight in a Nellore beef cattle population. First, an animal model was fitted to the data and second, the influence of additive and environmental effects on the residual variance of these traits was investigated with different models, in which the log squared estimated residuals for each phenotypic record were analyzed using the restricted maximum likelihood method. Monte Carlo simulation was performed to assess the reliability of variance component estimates from the second step and the accuracy of estimated breeding values for residual variation.ResultsThe results suggest that both genetic and environmental factors have an effect on the residual variance of weight gain from birth to weaning and long-yearling in Nellore beef cattle and that uniformity of these traits could be improved by selecting for lower residual variance, when considering a large amount of information to predict genetic merit for this criterion. Simulations suggested that using the two-step approach would lead to biased estimates of variance components, such that more adequate methods are needed to study the genetic heterogeneity of residual variance in beef cattle.
Journal of Animal Science | 2016
Rafael Medeiros de Oliveira Silva; B. O. Fragomeni; D. A. L. Lourenco; Ana Fabrícia Braga Magalhães; Natalia Irano; Roberto Carvalheiro; R. C. Canesin; Maria Eugênia Zerlotti Mercadante; Arione Augusti Boligon; Fernando Baldi; I. Misztal; Lucia Galvão de Albuquerque
Animal feeding is the most important economic component of beef production systems. Selection for feed efficiency has not been effective mainly due to difficult and high costs to obtain the phenotypes. The application of genomic selection using SNP can decrease the cost of animal evaluation as well as the generation interval. The objective of this study was to compare methods for genomic evaluation of feed efficiency traits using different cross-validation layouts in an experimental beef cattle population genotyped for a high-density SNP panel (BovineHD BeadChip assay 700k, Illumina Inc., San Diego, CA). After quality control, a total of 437,197 SNP genotypes were available for 761 Nelore animals from the Institute of Animal Science, Sertãozinho, São Paulo, Brazil. The studied traits were residual feed intake, feed conversion ratio, ADG, and DMI. Methods of analysis were traditional BLUP, single-step genomic BLUP (ssGBLUP), genomic BLUP (GBLUP), and a Bayesian regression method (BayesCπ). Direct genomic values (DGV) from the last 2 methods were compared directly or in an index that combines DGV with parent average. Three cross-validation approaches were used to validate the models: 1) YOUNG, in which the partition into training and testing sets was based on year of birth and testing animals were born after 2010; 2) UNREL, in which the data set was split into 3 less related subsets and the validation was done in each subset a time; and 3) RANDOM, in which the data set was randomly divided into 4 subsets (considering the contemporary groups) and the validation was done in each subset at a time. On average, the RANDOM design provided the most accurate predictions. Average accuracies ranged from 0.10 to 0.58 using BLUP, from 0.09 to 0.48 using GBLUP, from 0.06 to 0.49 using BayesCπ, and from 0.22 to 0.49 using ssGBLUP. The most accurate and consistent predictions were obtained using ssGBLUP for all analyzed traits. The ssGBLUP seems to be more suitable to obtain genomic predictions for feed efficiency traits on an experimental population of genotyped animals.
Journal of Dairy Science | 2015
Solomon A. Boison; Déborah Santos; A.H.T. Utsunomiya; Roberto Carvalheiro; Haroldo Henrique de Rezende Neves; A.M.Perez O’Brien; José Fernando Garcia; Johann Sölkner; M.V.G.B. da Silva
Genotype imputation is widely used as a cost-effective strategy in genomic evaluation of cattle. Key determinants of imputation accuracies, such as linkage disequilibrium patterns, marker densities, and ascertainment bias, differ between Bos indicus and Bos taurus breeds. Consequently, there is a need to investigate effectiveness of genotype imputation in indicine breeds. Thus, the objective of the study was to investigate strategies and factors affecting the accuracy of genotype imputation in Gyr (Bos indicus) dairy cattle. Four imputation scenarios were studied using 471 sires and 1,644 dams genotyped on Illumina BovineHD (HD-777K; San Diego, CA) and BovineSNP50 (50K) chips, respectively. Scenarios were based on which reference high-density single nucleotide polymorphism (SNP) panel (HDP) should be adopted [HD-777K, 50K, and GeneSeek GGP-75Ki (Lincoln, NE)]. Depending on the scenario, validation animals had their genotypes masked for one of the lower-density panels: Illumina (3K, 7K, and 50K) and GeneSeek (SGGP-20Ki and GGP-75Ki). We randomly selected 171 sires as reference and 300 as validation for all the scenarios. Additionally, all sires were used as reference and the 1,644 dams were imputed for validation. Genotypes of 98 individuals with 4 and more offspring were completely masked and imputed. Imputation algorithms FImpute and Beagle v3.3 and v4 were used. Imputation accuracies were measured using the correlation and allelic correct rate. FImpute resulted in highest accuracies, whereas Beagle 3.3 gave the least-accurate imputations. Accuracies evaluated as correlation (allelic correct rate) ranged from 0.910 (0.942) to 0.961 (0.974) using 50K as HDP and with 3K (7K) as low-density panels. With GGP-75Ki as HDP, accuracies were moderate for 3K, 7K, and 50K, but high for SGGP-20Ki. The use of HD-777K as HDP resulted in accuracies of 0.888 (3K), 0.941 (7K), 0.980 (SGGP-20Ki), 0.982 (50K), and 0.993 (GGP-75Ki). Ungenotyped individuals were imputed with an average accuracy of 0.970. The average top 5 kinship coefficients between reference and imputed individuals was a strong predictor of imputation accuracy. FImpute was faster and used less memory than Beagle v4. Beagle v4 outperformed Beagle v3.3 in accuracy and speed of computation. A genotyping strategy that uses the HD-777K SNP chip as a reference panel and SGGP-20Ki as the lower-density SNP panel should be adopted as accuracy was high and similar to that of the 50K. However, the effect of using imputed HD-777K genotypes from the SGGP-20Ki on genomic evaluation is yet to be studied.
Revista Brasileira De Zootecnia | 2006
Eduardo da Cruz Gouveia Pimentel; Sandra Aidar de Queiroz; Roberto Carvalheiro; Luiz Alberto Fries
Os objetivos neste trabalho foram comparar estimativas de parâmetros geneticos obtidas por meio de dois modelos - um contendo apenas efeitos aditivos e de dominância e outro que incluiu os efeitos aditivo-conjunto (complementaridade) e epistatico - e testar alternativas de criterios objetivos para determinacao do coeficiente lambda na aplicacao da regressao de cumeeira. Os resultados obtidos revelaram que a escolha de um criterio para determinacao do coeficiente lambda em regressao de cumeeira depende nao apenas do conjunto de dados e do modelo utilizado, mas, sobretudo, de um conhecimento previo acerca do fenomeno estudado e do significado pratico e da interpretacao dos parâmetros encontrados. Pelo uso de modelos mais completos para avaliacao de efeitos geneticos em bovinos de corte, pode-se identificar a contribuicao dos efeitos aditivo-conjunto e epistatico, que encontram-se embutidos no efeito de heterose estimado por modelos mais simples. A regressao de cumeeira e uma ferramenta que viabiliza a obtencao dessas estimativas mesmo na presenca de forte multicolinearidade.
Livestock Production Science | 2004
Carlos Dario Ortiz Peña; Roberto Carvalheiro; Sandra Aidar de Queiroz; Luiz Alberto Fries
Abstract Genetic parameters were estimated for pre-weaning average daily gain (ADG) and number of days to gain 160 kg from birth to weaning (D160) of Nelore cattle. Ranks of animals were compared for these traits. Heritability estimates were 0.17 and 0.10 for ADG (direct and maternal), and 0.14 and 0.09, for D160 (direct and maternal). Rank correlations between expected breeding values (EBV) were 0.97 and 0.95, for direct and maternal effects, respectively. Despite similar heritability estimates and high rank correlations, results showed that changes in rank could happen when choosing the best animals according to EBV for D160 or ADG. There were evidences that sires selected using D160 would produce progeny that achieve a specified market weight at an earlier age and would be more uniform, since this criterion is calculated as a harmonic mean function.