Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberto Coronado is active.

Publication


Featured researches published by Roberto Coronado.


Cardiovascular Research | 2001

Reduction in density of transverse tubules and L-type Ca2+ channels in canine tachycardia-induced heart failure

Jia-Qiang He; Matthew W. Conklin; Jason D. Foell; Matthew R. Wolff; Robert A. Haworth; Roberto Coronado; Timothy J. Kamp

OBJECTIVE Persistent supraventricular tachycardia leads to the development of a dilated cardiomyopathy with impairment of excitation-contraction (EC) coupling. Since the initial trigger for EC coupling in ventricular muscle is the influx of Ca(2+) through L-type Ca(2+) channels (I(Ca)) in the transverse tubules (T-tubules), we determined if the density of the T-tubule system and L-type Ca(2+) channels change in canine tachycardia pacing-induced cardiomyopathy. METHODS Confocal imaging of isolated ventricular myocytes stained with the membrane dye Di-8-ANEPPS was used to image the T-tubule system, and standard whole-cell patch clamp techniques were used to measure I(Ca) and intramembrane charge movement. RESULTS A complex staining pattern of interconnected tubules including prominent transverse components spaced every approximately 1.6 microm was present in control ventricular myocytes, but failing cells demonstrated a far less regular T-tubule system with a relative loss of T-tubules. In confocal optical slices, the average % of the total cell area staining for T-tubules decreased from 11.5+/-0.4 in control to 8.7+/-0.4% in failing cells (P<0.001). Whole-cell patch clamp studies revealed that I(Ca) density was unchanged. Since whole-cell I(Ca) is due to both the number of channels as well as the functional properties of those channels, we measured intramembrane charge movement as an assay for changes in channel number. The saturating amount of charge that moves due to gating of L-type Ca(2+) channels, Q(on,max), was decreased from 6.5+/-0.6 in control to 2.8+/-0.3 fC/pF in failing myocytes (P<0.001). CONCLUSIONS Cellular remodeling in heart failure results in decreased density of T-tubules and L-type Ca(2+) channels, which contribute to abnormal EC coupling.


Biophysical Journal | 1990

Abnormal ryanodine receptor channels in malignant hyperthermia

Michael Fill; Roberto Coronado; J.R. Mickelson; J. Vilven; Jianjie Ma; B.A. Jacobson; C.F. Louis

Previous studies have demonstrated a defect associated with the calcium release mechanism of sarcoplasmic reticulum (SR) from individuals susceptible to malignant hyperthermia (MH). To examine whether SR calcium release channels were indeed altered in MH, SR vesicles were purified from normal and MH susceptible (MHS) porcine muscle. The Ca2+ dependence of calcium efflux rates from 45Ca2(+)-filled SR vesicles was then compared with the Ca2+ dependence of single-channel recordings of SR vesicles incorporated into planar lipid bilayers. The rate constants of 45Ca2+ efflux from MHS SR were two to threefold larger than from normal SR over a wide range of myoplasmic Ca2+. Normal and MHS single channels were progressively activated in a similar fashion by cis Ca2+ from pCa 7 to 4. However, below pCa 4, normal channels were inactivated by cis Ca2+, whereas MHS channels remained open for significantly longer times. The altered Ca2+ dependence of channel inactivation in MHS SR was also evident when Ca2+ was increased on the trans side while cis Ca2+ was held constant. We propose that a defect in a low-affinity Ca2+ binding site is responsible for the altered gating of MHS SR channels. Such a defect could logically result from a mutation in the gene encoding the calcium release channel, providing a testable hypothesis for the molecular basis of this inherited disorder.


Biophysical Journal | 1995

Primary structure and properties of helothermine, a peptide toxin that blocks ryanodine receptors

J. Morrissette; J. Krätzschmar; B. Haendler; Roque El-Hayek; J. Mochca-Morales; B.M. Martin; Jitandrakumar R. Patel; Richard L. Moss; W.D. Schleuning; Roberto Coronado

Helothermine, a protein from the venom of the Mexican beaded lizard (Heloderma horridum horridum), was found to inhibit [3H]ryanodine binding to cardiac and skeletal sarcoplasmic reticulum, to block cardiac and skeletal ryanodine receptor channels incorporated into planar bilayers, and to block Ca(2+)-induced Ca2+ release triggered by photolysis of nitr-5 in saponin-permeabilized trabeculae from rat ventricle. Cloning of the helothermine cDNA revealed that the protein is composed of 223 amino acids with a molecular mass of 25,376 daltons, and apparently is stabilized by eight disulfide bridges. The peptide sequence showed significant homology with a family of cysteine-rich secretory proteins found in the male genital tract and in salivary glands. The interaction of helothermine and ryanodine receptors should serve to define functional domains within the channel structure involved in the control of Ca2+ release from sarcoplasmic reticulum.


Trends in Neurosciences | 1988

Ryanodine receptor channel of sarcoplasmic reticulum

Michael Fill; Roberto Coronado

Abstract The Ca 2+ release channel of the sarcoplasmic reticulum of muscle cells has been purified using ryanodine, a plant alkaloid that binds to the 450 kDa channel protein with nanomolar affinity. Electron microscopy indicates that the ryanodine receptor is a tetramer and forms the ‘feet’ structures described in muscle triads. This protein complex is most likely involved in inter-membrane signal transduction during excitation-contraction coupling.


Biophysical Journal | 1996

Reduced Ca2+ current, charge movement, and absence of Ca2+ transients in skeletal muscle deficient in dihydropyridine receptor beta 1 subunit.

C. Strube; Maryline Beurg; Patricia A. Powers; Ronald G. Gregg; Roberto Coronado

The Ca2+ currents, charge movements, and intracellular Ca2+ transients in mouse skeletal muscle cells homozygous for a null mutation in the cchb1 gene encoding the beta 1 subunit of the dihydropyridine receptor have been characterized. I beta null, the L-type Ca2+ current of mutant cells, had a approximately 13-fold lower density than the L-type current of normal cells (0.41 +/- 0.042 pA/pF at + 20 mV, compared with 5.2 +/- 0.38 pA/pF in normal cells). I beta null was sensitive to dihydropyridines and had faster kinetics of activation and slower kinetics of inactivation than the L-type current of normal cells. Charge movement was reduced approximately 2.8-fold, with Qmax = 6.9 +/- 0.61 and Qmax = 2.5 +/- 0.2 nC/microF in normal and mutant cells, respectively. Approximately 40% of Qmax was nifedipine sensitive in both groups. In contrast to normal cells, Ca2+ transients could not be detected in mutant cells at any test potential; however, caffeine induced a robust Ca2+ transient. In homogenates of mutant muscle, the maximum density of [3H]PN200-110 binding sites (Bmax) was reduced approximately 3.9-fold. The results suggest that the excitation-contraction uncoupling of beta 1-null skeletal muscle involves a failure of the transduction mechanism that is due to either a reduced amount of alpha 1S subunits in the membrane or the specific absence of beta 1 from the voltage-sensor complex.


Anesthesiology | 1994

Activation of the Ca2+ release channel of cardiac sarcoplasmic reticulum by volatile anesthetics.

Timothy J. Connelly; Roberto Coronado

BackgroundDepression of myocardial contractility associated with the volatile anesthetics is well established clinically and experimentally. The molecular mechanisms underlying this effect, however, have not been completely characterized. Whereas the Ca2+ release channel of cardiac sarcoplasmic reticulum (SR) has been implicated as a potential target contributing to anesthetic-induced myocardial depression, the effect of the volatile anesthetics on this protein have not been characterized at the isolated, single-channel level. The authors sought to identify changes in channel gating and conductance resulting from exposure to halothane, enflurane, and isoflurane that would contribute to the associated negative inotropy, as well as to explain the observation that isoflurane causes less contractile depression than either halothane or enflurane. MethodsVesicles enriched in SR were prepared from porcine left ventricular tissue. Fusion of these vesicles with artificial lipid bilayers under the experimental conditions provided single-channel recordings of the SR Ca2+ release channel. The gating properties and the conductance of these channels were determined in the presence and absence of clinical concentrations of halothane, enflurane, and isoflurane. ResultsHalothane (1.2 vol%) and enflurane (1.6 vol%) activated, the Ca2+ release channel by increasing the open probability (fraction of time that the channel is open) without altering the channel conductance. These agents altered channel gating by increasing the duration of open events, rather than the number of open events. Isoflurane (1.4 vol%) had no effect on channel gating or conductance. Halothane caused dose-dependent channel activation (0.2–1.5 vol%), and channel activation was found to be reversible upon washout of halothane from the solutions bathing the lipid bilayer. ConclusionsHalothane and enflurane gate the Ca2+ release channel into the open state without altering the channel conductance. An increase in the duration of open events results from halothane and enflurane, but does not occur in the presence of isoflurane. Activation of the SR Ca2+ release channel would lead to loss of SR stores of Ca2+ into the cytoplasm, which is rapidly mobilized to the extracellular space. A net depletion of Ca2+ available for excitation-contraction coupling would result. The observation that isoflurane does not alter gating of this channel contributes to the understanding of the molecular mechanisms by which isoflurane depresses myocardial contractility less than halothane and enflurane.


Biophysical Journal | 1986

Single-channel calcium and barium currents of large and small conductance from sarcoplasmic reticulum.

J.S. Smith; Roberto Coronado; Gerhard Meissner

Two types of divalent cation conducting channels from rabbit skeletal muscle sarcoplasmic reticulum (SR) were incorporated into planar lipid bilayers. A high conductance (100 pS in 53 mM trans Ca2+) Ca2+ channel was incorporated from heavy density SR fractions. The 100-pS channel was activated by adenine nucleotides and Ca2+ and inhibited by Mg2+ and ruthenium red. A 10-pS calcium and barium conducting channel could be incorporated into planar lipid bilayers from light, intermediate, and heavy density SR vesicles. 10-pS channel activity in bilayers was not dependent on cis Ca2+ and was only weakly dependent on adenine nucleotides. Ruthenium red at concentrations up to 1 mM had no effect and Mg2+ was only marginally effective in inhibiting macroscopic Ba2+ currents from this channel. Calcium releasing activity in intermediate and heavy density SR fractions was assayed according to a rapid quench protocol and compared with the results obtained in the bilayer. Results from this comparison indicate that the 10-pS channel is probably not involved in rapid Ca2+- and adenine nucleotide-induced Ca2+ release from isolated SR vesicles.


Biophysical Journal | 1999

Involvement of the Carboxy-Terminus Region of the Dihydropyridine Receptor β1a Subunit in Excitation-Contraction Coupling of Skeletal Muscle

Maryline Beurg; Chris A. Ahern; Paola Vallejo; Matthew W. Conklin; Patricia A. Powers; Ronald G. Gregg; Roberto Coronado

Skeletal muscle knockout cells lacking the beta subunit of the dihydropyridine receptor (DHPR) are devoid of slow L-type Ca(2+) current, charge movements, and excitation-contraction coupling, despite having a normal Ca(2+) storage capacity and Ca(2+) spark activity. In this study we identified a specific region of the missing beta1a subunit critical for the recovery of excitation-contraction. Experiments were performed in beta1-null myotubes expressing deletion mutants of the skeletal muscle-specific beta1a, the cardiac/brain-specific beta2a, or beta2a/beta1a chimeras. Immunostaining was used to determine that all beta constructs were expressed in these cells. We examined the Ca(2+) conductance, charge movements, and Ca(2+) transients measured by confocal fluo-3 fluorescence of transfected myotubes under whole-cell voltage-clamp. All constructs recovered an L-type Ca(2+) current with a density, voltage-dependence, and kinetics of activation similar to that recovered by full-length beta1a. In addition, all constructs except beta2a mutants recovered charge movements with a density similar to full-length beta1a. Thus, all beta constructs became integrated into a skeletal-type DHPR and, except for beta2a mutants, all restored functional DHPRs to the cell surface at a high density. The maximum amplitude of the Ca(2+) transient was not affected by separate deletions of the N-terminus of beta1a or the central linker region of beta1a connecting two highly conserved domains. Also, replacement of the N-terminus half of beta1a with that of beta2a had no effect. However, deletion of 35 residues of beta1a at the C-terminus produced a fivefold reduction in the maximum amplitude of the Ca(2+) transients. A similar observation was made by deletion of the C-terminus of a chimera in which the C-terminus half was from beta1a. The identified domain at the C-terminus of beta1a may be responsible for colocalization of DHPRs and ryanodine receptors (RyRs), or may be required for the signal that opens the RyRs during excitation-contraction coupling. This new role of DHPR beta in excitation-contraction coupling represents a cell-specific function that could not be predicted on the basis of functional expression studies in heterologous cells.


Biophysical Journal | 1999

Contribution of Ryanodine Receptor Type 3 to Ca 2 Sparks in Embryonic Mouse Skeletal Muscle

Matthew W. Conklin; Virginia Barone; Vincenzo Sorrentino; Roberto Coronado

The kinetic behavior of Ca(2+) sparks in knockout mice lacking a specific ryanodine receptor (RyR) isoform should provide molecular information on function and assembly of clusters of RyRs. We examined resting Ca(2+) sparks in RyR type 3-null intercostal myotubes from embryonic day 18 (E18) mice and compared them to Ca(2+) sparks in wild-type (wt) mice of the same age and to Ca(2+) sparks in fast-twitch muscle cells from the foot of wt adult mice. Sparks from RyR type 3-null embryonic cells (368 events) were significantly smaller, briefer, and had a faster time to peak than sparks from wt cells (280 events) of the same age. Sparks in adult cells (220 events) were infrequent, yet they were highly reproducible with population means smaller than those in embryonic RyR type 3-null cells but similar to those reported in adult amphibian skeletal muscle fibers. Three-dimensional representations of the spark peak intensity (DeltaF/Fo) vs. full width at half-maximal intensity (FWHM) vs. full duration at half-maximal intensity (FTHM) showed that wt embryonic sparks were considerably more variable in size and kinetics than sparks in adult muscle. In all cases, tetracaine (0.2 mM) abolished Ca(2+) spark activity, whereas caffeine (0.1 mM) lengthened the spark duration in wt embryonic and adult cells but not in RyR type 3-null cells. These results confirmed that sparks arose from RyRs. The low caffeine sensitivity of RyR type 3-null cells is entirely consistent with observations by other investigators. There are three conclusions from this study: i) RyR type-1 engages in Ca(2+) spark activity in the absence of other RyR isoforms in RyR type 3-null myotubes; ii) Ca(2+) sparks with parameters similar to those reported in adult amphibian skeletal muscle can be detected, albeit at a low frequency, in adult mammalian skeletal muscle cells; and iii) a major contributor to the unusually large Ca(2+) sparks observed in normal (wt) embryonic muscle is RyR type 3. To explain the reduction in the size of sparks in adult compared to embryonic skeletal muscle, we suggest that in embryonic muscle, RyR type 1 and RyR type 3 channels co-contribute to Ca(2+) release during the same spark and that Ca(2+) sparks undergo a maturation process which involves a decrease in RyR type 3.


Biophysical Journal | 2000

Comparison of Ca2+ Sparks Produced Independently by Two Ryanodine Receptor Isoforms (Type 1 or Type 3)

Matthew W. Conklin; Chris A. Ahern; Paola Vallejo; Vincenzo Sorrentino; Hiroshi Takeshima; Roberto Coronado

The molecular determinants of a Ca(2+) spark, those events that determine the sudden opening and closing of a small number of ryanodine receptor (RyR) channels limiting Ca(2+) release to a few milliseconds, are unknown. As a first step we investigated which of two RyR isoforms present in mammalian embryonic skeletal muscle, RyR type 1(RyR-1) or RyR type 3 (RyR-3) has the ability to generate Ca(2+) sparks. Their separate contributions were investigated in intercostal muscle cells of RyR-1 null and RyR-3 null mouse embryos. A comparison of Ca(2+) spark parameters of RyR-1 null versus RyR-3 null cells measured at rest with fluo-3 showed that neither the peak fluorescence intensity (DeltaF/F(o) = 1.25 +/- 0.7 vs. 1.55 +/- 0.6), spatial width at half-max intensity (FWHM = 2.7 +/- 1.2 vs. 2.6 +/- 0.6 microm), nor the duration at half-max intensity (FTHM = 45 +/- 49 vs. 43 +/- 25 ms) was significantly different. Sensitivity to caffeine (0.1 mM) was remarkably different, with sparks in RyR-1 null myotubes becoming brighter and longer in duration, whereas those in RyR-3 null cells remained unchanged. Controls performed in double RyR-1/RyR-3 null cells obtained by mice breeding showed that sparks were not observed in the absence of both isoforms in >150 cells imaged. In conclusion, 1) RyR-1 and RyR-3 appear to be the only intracellular Ca(2+) channels that participate in Ca(2+) spark activity in embryonic skeletal muscle; 2) except in their responsiveness to caffeine, both isoforms have the ability to produce Ca(2+) sparks with nearly identical properties, so it is rather unlikely that a single RyR isoform, when others are also present, would be responsible for Ca(2+) sparks; and 3) because RyR-1 null cells are excitation-contraction (EC) uncoupled and RyR-3 null cells exhibit a normal phenotype, Ca(2+) sparks result from the inherent activity of small clusters of RyRs regardless of the participation of these RyRs in EC coupling.

Collaboration


Dive into the Roberto Coronado's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris A. Ahern

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Patricia A. Powers

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Sukhareva

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Ronald G. Gregg

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jianjie Ma

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Paola Vallejo

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Carmen R. Valdivia

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

David C. Sheridan

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge