Roberto Di Leonardo
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto Di Leonardo.
Optics Express | 2007
Roberto Di Leonardo; F. Ianni; G. Ruocco
We propose a new iterative algorithm for obtaining optimal holograms targeted to the generation of arbitrary three dimensional structures of optical traps. The algorithm basic idea and performance are discussed in conjunction to other available algorithms. We show that all algorithms lead to a phase distribution maximizing a specific performance quantifier, expressed as a function of the trap intensities. In this scheme we go a step further by introducing a new quantifier and the associated algorithm leading to unprecedented efficiency and uniformity in trap light distributions. The algorithms performances are investigated both numerically and experimentally.
Physical Review Letters | 2009
L. Angelani; Roberto Di Leonardo; G. Ruocco
Micromotors pushed by biological entities, such as motile bacteria, constitute a fascinating way to convert chemical energy into mechanical work at the micrometer scale. Here we show, by using numerical simulations, that a properly designed asymmetric object can be spontaneously set into the desired motion when immersed in a chaotic bacterial bath. Our findings open the way to conceive new hybrid microdevices exploiting the mechanical power production of bacterial organisms. Moreover, the system provides an example of how, in contrast with equilibrium thermal baths, the irreversible chaotic motion of active particles can be rectified by asymmetric environments.
Optics Express | 2011
Roberto Di Leonardo; S. Bianchi
We demonstrate that a structured light intensity pattern can be produced at the output of a multi-mode optical fiber by shaping the wavefront of the input beam with a spatial light modulator. We also find the useful property that, as in the case for free space propagation, output intensities can be easily superimposed by taking the argument of the complex superposition of corresponding phase-only holograms. An analytical expression is derived relating output intensities ratios to hologram weights in the superposition.
Nature Communications | 2015
Claudio Maggi; Filippo Saglimbeni; Michele Dipalo; Francesco De Angelis; Roberto Di Leonardo
The direct conversion of light into work allows the driving of micron-sized motors in a contactless, controllable and continuous way. Light-to-work conversion can involve either direct transfer of optical momentum or indirect opto-thermal effects. Both strategies have been implemented using different coupling mechanisms. However, the resulting efficiencies are always very low, and high power densities, generally obtained by focused laser beams, are required. Here we show that microfabricated gears, sitting on a liquid–air interface, can efficiently convert absorbed light into rotational motion through a thermocapillary effect. We demonstrate rotation rates up to 300 r.p.m. under wide-field illumination with incoherent light. Our analysis shows that thermocapillary propulsion is one of the strongest mechanisms for light actuation at the micron- and nanoscale.
Scientific Reports | 2015
Claudio Maggi; Umberto Marini Bettolo Marconi; Nicoletta Gnan; Roberto Di Leonardo
We derive the stationary probability distribution for a non-equilibrium system composed by an arbitrary number of degrees of freedom that are subject to Gaussian colored noise and a conservative potential. This is based on a multidimensional version of the Unified Colored Noise Approximation. By comparing theory with numerical simulations we demonstrate that the theoretical probability density quantitatively describes the accumulation of active particles around repulsive obstacles. In particular, for two particles with repulsive interactions, the probability of close contact decreases when one of the two particle is pinned. Moreover, in the case of isotropic confining potentials, the radial density profile shows a non trivial scaling with radius. Finally we show that the theory well approximates the “pressure” generated by the active particles allowing to derive an equation of state for a system of non-interacting colored noise-driven particles.
Soft Matter | 2009
Luciano Galantini; Claudia Leggio; Aida Jover; Francisco Meijide; Nicolae Viorel Pavel; Victor Hugo Soto Tellini; José Vázquez Tato; Roberto Di Leonardo; G. Ruocco
We report a kinetic study of the supramolecular tubule formation of the bile salt derivative [3β,5β,7α,12α]-3-(4-t-butylbenzoilamine)-7,12-dihydroxycholan-24-oic acid sodium salt (Na-tbutPhC). At high bicarbonate buffer concentration (pH∼10) this salt shows gelator properties. Starting from gels or viscous solutions, the tubule formation is triggered by increasing the temperature beyond the critical value of 34–36 °C. For gels, when the process takes place, the transition to sols occurs. The process is easily triggered and can be followed by several techniques. We used static light scattering (SLS), circular dichroism (CD), small angle X-ray scattering (SAXS) along with transmission electron (TEM) and optical microscopies. The CD results show that fibrils with a clockwise arrangement of the bile salt derivative are present in the samples at room temperature. When the tubule formation starts, evolutions of the CD and SLS profiles are observed indicating that the formation process begins with the aggregation of the fibrils accompanied by a simultaneous peculiar reciprocal reorientation of the surfactant molecules. After that, as pointed out by the long time evolution of the curves, a slow transformation towards the final well defined tubules occurs, involving an adjustment of the molecular packing. In the meanwhile, the slow ordering of the tubule walls in well spaced layers takes place, as inferred by SAXS. The TEM images show that short disordered tubules are formed, because of the aggregation of fibrils, in the beginning. Moreover they highlight a final elongation of the tubules taking place without a further aggregation of fibrils. Optical microscopy frames, collected during the process, point out that the tubules grow singly even at quite a high concentration, thus supporting the data interpretation.
Small | 2016
Claudio Maggi; Juliane Simmchen; Filippo Saglimbeni; Jaideep Katuri; Michele Dipalo; Francesco De Angelis; Samuel Sánchez; Roberto Di Leonardo
Janus particles can self-assemble around microfabricated gears in reproducible configurations with a high degree of spatial and orientational order. The final configuration maximizes the torque applied on the rotor leading to a unidirectional and steady rotating motion. The interplay between geometry and dynamical behavior leads to the self-assembly of Janus micromotors starting from randomly distributed particles.
New Journal of Physics | 2010
L. Angelani; Roberto Di Leonardo
Micron-sized objects having asymmetric boundaries can rectify the chaotic motions of an active bacterial suspension and perform geometrically biased random walks. Using numerical simulations in a planar geometry, we show that arrow-shaped micro-shuttles, constrained to move in one dimension (1D) in a bath of self-propelled micro-organisms, spontaneously perform unidirectional translational motions with a strongly shape-dependent speed. Relaxing the 1D constraint, a random motion in the whole plane sets in at long times, due to random changes in shuttle orientation caused by bacterial collisions. The complex dynamics arising from the mechanical interactions between bacteria and the object boundaries can be described by a Gaussian stochastic force with a shape-dependent mean and a self-correlation decaying exponentially on the timescale of seconds.
Lab on a Chip | 2009
Stephen Keen; Alison M. Yao; Jonathan Leach; Roberto Di Leonardo; C. D. Saunter; Gordon D. Love; Jonathan M. Cooper; Miles J. Padgett
We demonstrate the technique of multipoint viscosity measurements incorporating the accurate calibration of micron sized particles. We describe the use of a high-speed camera to measure the residual motion of particles trapped in holographic optical tweezers, enabling us to calculate the fluid viscosity at multiple points across the field-of-view of the microscope within a microfluidic system.
Physical Review Letters | 2012
Arran Curran; Michael P. Lee; Miles J. Padgett; Jonathan M. Cooper; Roberto Di Leonardo
Holographic optical tweezers are used to construct a static bistable optical potential energy landscape where a brownian particle experiences restoring forces from two nearby optical traps and undergoes thermally activated transitions between the two energy minima. Hydrodynamic coupling between two such systems results in their partial synchronization. This is interpreted as an emergence of higher mobility pathways, along which it is easier to overcome barriers to structural rearrangement.