Roberto N. De Guzman
University of Kansas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roberto N. De Guzman.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Sonja A. Dames; Maria A. Martinez-Yamout; Roberto N. De Guzman; H. Jane Dyson; Peter E. Wright
The cellular response to low tissue oxygen concentrations is mediated by the hypoxia-inducible transcription factor HIF-1. Under hypoxic conditions, HIF-1 activates transcription of critical adaptive genes by recruitment of the general coactivators CBP/p300 through interactions with its α-subunit (Hif-1α). Disruption of the Hif-1α/p300 interaction has been linked to attenuation of tumor growth. To delineate the structural basis for this interaction, we have determined the solution structure of the complex between the carboxy-terminal activation domain (CAD) of Hif-1α and the zinc-binding TAZ1 (CH1) motif of cyclic-AMP response element binding protein (CREB) binding protein (CBP). Despite the overall similarity of the TAZ1 structure to that of the TAZ2 (part of the CH3) domain of CBP, differences occur in the packing of helices that can account for differences in specificity. The unbound CAD is intrinsically disordered and remains relatively extended upon binding, wrapping almost entirely around the TAZ1 domain in a groove through much of its surface. Three short helices are formed upon binding, stabilized by intermolecular interactions. The Asn-803 side chain, which functions as a hypoxic switch, is located on the second of these helices and is buried in the molecular interface. The third helix of the Hif-1α CAD docks in a deep hydrophobic groove in TAZ1, providing extensive intermolecular hydrophobic interactions that contribute to the stability of the complex. The structure of this complex provides new insights into the mechanism through which Hif-1α recruits CBP/p300 in response to hypoxia.
Journal of Biological Chemistry | 2007
Adam R. Johnson; Alexander Pavlovsky; Daniel F. Ortwine; Faith Prior; Chiu-Fai Man; Dirk A. Bornemeier; Craig Banotai; W. Thomas Mueller; Patrick McConnell; Chunhong Yan; Vijay Baragi; Charles Lesch; W. Howard Roark; Michael T. Wilson; Kaushik Datta; Roberto N. De Guzman; Hyo-Kyung Han; Richard D. Dyer
Matrix metalloproteinase-13 (MMP13) is a Zn2+-dependent protease that catalyzes the cleavage of type II collagen, the main structural protein in articular cartilage. Excess MMP13 activity causes cartilage degradation in osteoarthritis, making this protease an attractive therapeutic target. However, clinically tested MMP inhibitors have been associated with a painful, joint-stiffening musculoskeletal side effect that may be due to their lack of selectivity. In our efforts to develop a disease-modifying osteoarthritis drug, we have discovered MMP13 inhibitors that differ greatly from previous MMP inhibitors; they do not bind to the catalytic zinc ion, they are noncompetitive with respect to substrate binding, and they show extreme selectivity for inhibiting MMP13. By structure-based drug design, we generated an orally active MMP13 inhibitor that effectively reduces cartilage damage in vivo and does not induce joint fibroplasias in a rat model of musculoskeletal syndrome side effects. Thus, highly selective inhibition of MMP13 in patients may overcome the major safety and efficacy challenges that have limited previously tested non-selective MMP inhibitors. MMP13 inhibitors such as the ones described here will help further define the role of this protease in arthritis and other diseases and may soon lead to drugs that safely halt cartilage damage in patients.
Journal of Biological Chemistry | 2004
Roberto N. De Guzman; Maria A. Martinez-Yamout; H. Jane Dyson; Peter E. Wright
The TAZ1 domain of the homologous transcriptional coactivators CREB-binding protein (CBP) and p300 forms a complex with CITED2 (CBP/p300-interacting transactivator with ED-rich tail), inhibiting the activity of the hypoxia inducible factor (HIF-1α) and thereby attenuating the cellular response to low tissue oxygen concentration. We report the NMR structure of the CBP TAZ1 domain bound to the activation domain of CIT-ED2. The structure of TAZ1, consisting of four α-helices (α1-α4) stabilized by three zinc atoms, is very similar in the CITED2 and HIF-1α complexes. The activation domain of CITED2 is unstructured when free and folds upon binding, forming a helix (termed αA) and an extended structure that wraps around TAZ1. The CITED2 αA helix packs in the TAZ1 α1/α4 interface, a site that forms weak interactions with the poorly defined aminoterminal α-helix of HIF-1α. CITED2 and HIF-1α both contain a four residue motif, LP(E/Q)L, which binds in the TAZ1 α1/α2/α3 junction in each complex. The carboxyl-terminal region of CITED2 forms an extended structure with hydrophobic contacts in the TAZ1 α1/α3 interface in the site occupied by the HIF-1α αB helix. CITED2 does not bind at all to the TAZ1 site occupied by the HIF-1α carboxyl-terminal helix. The HIF-1α and CITED2 domains utilize partly overlapping surfaces of TAZ1 to achieve high affinity binding and to compete effectively with each other for interaction with CBP/p300; CITED2 and HIF-1α use these binding sites differently to maintain similar binding affinities in order to displace each other in a feedback loop during the hypoxic response.
Biochemistry | 2013
Srirupa Chatterjee; Sukanya Chaudhury; Andrew C. McShan; Kawaljit Kaur; Roberto N. De Guzman
Many plant and animal bacterial pathogens assemble a needle-like nanomachine, the type III secretion system (T3SS), to inject virulence proteins directly into eukaryotic cells to initiate infection. The ability of bacteria to inject effectors into host cells is essential for infection, survival, and pathogenesis for many Gram-negative bacteria, including Salmonella, Escherichia, Shigella, Yersinia, Pseudomonas, and Chlamydia spp. These pathogens are responsible for a wide variety of diseases, such as typhoid fever, large-scale food-borne illnesses, dysentery, bubonic plague, secondary hospital infections, and sexually transmitted diseases. The T3SS consists of structural and nonstructural proteins. The structural proteins assemble the needle apparatus, which consists of a membrane-embedded basal structure, an external needle that protrudes from the bacterial surface, and a tip complex that caps the needle. Upon host cell contact, a translocon is assembled between the needle tip complex and the host cell, serving as a gateway for translocation of effector proteins by creating a pore in the host cell membrane. Following delivery into the host cytoplasm, effectors initiate and maintain infection by manipulating host cell biology, such as cell signaling, secretory trafficking, cytoskeletal dynamics, and the inflammatory response. Finally, chaperones serve as regulators of secretion by sequestering effectors and some structural proteins within the bacterial cytoplasm. This review will focus on the latest developments and future challenges concerning the structure and biophysics of the needle apparatus.
Biopolymers | 1998
Roberto N. De Guzman; Ryan B. Turner; Michael F. Summers
The x‐ray structure of the glutamine aminoacyl tRNA synthetase bound to its cognate tRNAGln and ATP was reported by Steitz and co‐workers in 1989, providing the first high resolution structure of a protein–RNA complex. Since then, high resolution structures have been reported for RNA complexes with five other tRNA synthetases, the elongation factor Tu, the bacteriophage MS2 coat protein, the human spliceosomal U1A and U2B″–U1A′ proteins, and the HIV‐1 nucleocapsid protein. Although the number of high resolution structures of protein–RNA complexes are rather small, some general themes have begun to emerge regarding the nature and mechanisms of protein–RNA recognition.
Protein Science | 2011
Srirupa Chatterjee; Dalian Zhong; Bryce Andrew Nordhues; Kevin P. Battaile; Scott Lovell; Roberto N. De Guzman
The type III secretion system (T3SS) is a protein injection nanomachinery required for virulence by many human pathogenic bacteria including Salmonella and Shigella. An essential component of the T3SS is the tip protein and the Salmonella SipD and the Shigella IpaD tip proteins interact with bile salts, which serve as environmental sensors for these enteric pathogens. SipD and IpaD have long central coiled coils and their N‐terminal regions form α‐helical hairpins and a short helix α3 that pack against the coiled coil. Using AutoDock, others have predicted that the bile salt deoxycholate binds IpaD in a cleft formed by the α‐helical hairpin and its long central coiled coil. NMR chemical shift mapping, however, indicated that the SipD residues most affected by bile salts are located in a disordered region near helix α3. Thus, how bile salts interact with SipD and IpaD is unclear. Here, we report the crystal structures of SipD in complex with the bile salts deoxycholate and chenodeoxycholate. Bile salts bind SipD in a region different from what was predicted for IpaD. In SipD, bile salts bind part of helix α3 and the C‐terminus of the long central coiled coil, towards the C‐terminus of the protein. We discuss the biological implication of the differences in how bile salts interact with SipD and IpaD.
Journal of Biological Chemistry | 2009
D. Fernando Estrada; Daniel M. Boudreaux; Dalian Zhong; Stephen C. St. Jeor; Roberto N. De Guzman
Hantaviruses are distributed worldwide and can cause a hemorrhagic fever or a cardiopulmonary syndrome in humans. Mature virions consist of RNA genome, nucleocapsid protein, RNA polymerase, and two transmembrane glycoproteins, G1 and G2. The ectodomain of G1 is surface-exposed; however, it has a 142-residue C-terminal cytoplasmic tail that plays important roles in viral assembly and host-pathogen interaction. Here we show by NMR, circular dichroism spectroscopy, and mutagenesis that a highly conserved cysteine/histidine-rich region in the G1 tail of hantaviruses forms two CCHC-type classical zinc fingers. Unlike classical zinc fingers, however, the two G1 zinc fingers are intimately joined together, forming a compact domain with a unique fold. We discuss the implication of the hantaviral G1 zinc fingers in viral assembly and host-pathogen interaction.
Journal of Biological Chemistry | 2007
Lingling Zhang; Yu Wang; Andrew J. Olive; Nathan D. Smith; William D. Picking; Roberto N. De Guzman; Wendy L. Picking
The pathogenesis of Shigella flexneri requires a functional type III secretion apparatus to serve as a conduit for injecting host-altering effector proteins into the membrane and cytoplasm of the targeted cell. The type III secretion apparatus is composed of a basal body and an exposed needle that is an extended polymer of MxiH with a 2.0-nm inner channel. Invasion plasmid antigen D (IpaD) resides at the tip of the needle to control type III secretion. The atomic structures of MxiH and IpaD have been solved. MxiH (8.3 kDa) is a helix-turn-helix, whereas IpaD (36.6 kDa) has a dumbbell shape with two globular domains flanking a central coiled-coil that stabilizes the protein. These structures alone, however, have not been sufficient to produce a workable in silico model by which IpaD docks at the needle tip. Thus, the work presented here provides an initial step in understanding this important protein-protein interaction. We have identified key MxiH residues located in its PSNP loop and the contiguous surface that uniquely contribute to the formation of the IpaD-needle interface as determined by NMR chemical shift mapping. Mutation of Asn-43, Leu-47, and Tyr-50 residues severely affects the stable maintenance of IpaD at the Shigella surface and thus compromises the invasive phenotype of S. flexneri. Other residues could be mutated to give rise to intermediate phenotypes, suggesting they have a role in tip complex stabilization while not being essential for tip complex formation. Initial in vitro fluorescence polarization studies confirmed that specific amino acid changes adversely affect the MxiH-IpaD interaction. Meanwhile, none of the mutations appeared to have a negative effect on the MxiH-MxiH interactions required for efficient needle assembly.
Journal of Biological Chemistry | 2011
D. Fernando Estrada; Roberto N. De Guzman
The RNA virus that causes the Crimean Congo Hemorrhagic Fever (CCHF) is a tick-borne pathogen of the Nairovirus genus, family Bunyaviridae. Unlike many zoonotic viruses that are only passed between animals and humans, the CCHF virus can also be transmitted from human to human with an overall mortality rate approaching 30%. Currently, there are no atomic structures for any CCHF virus proteins or for any Nairovirus proteins. A critical component of the virus is the envelope Gn glycoprotein, which contains a C-terminal cytoplasmic tail. In other Bunyaviridae viruses, the Gn tail has been implicated in host-pathogen interaction and viral assembly. Here we report the NMR structure of the CCHF virus Gn cytoplasmic tail, residues 729–805. The structure contains a pair of tightly arranged dual ββα zinc fingers similar to those found in the Hantavirus genus, with which it shares about 12% sequence identity. Unlike Hantavirus zinc fingers, however, the CCHF virus zinc fingers bind viral RNA and contain contiguous clusters of conserved surface electrostatics. Our results provide insight into a likely role of the CCHF virus Gn zinc fingers in Nairovirus assembly.
Molecular Oncology | 2015
Lan Lan; Carl Appelman; Amber Smith; Jia Yu; Sarah Larsen; Rebecca T. Marquez; Hao Liu; Xiaoqing Wu; Philip Gao; Anuradha Roy; Asokan Anbanandam; Ragul Gowthaman; John Karanicolas; Roberto N. De Guzman; Steven A. Rogers; Jeffrey Aubé; Min Ji; Robert S. Cohen; Kristi L. Neufeld; Liang Xu
Musashi‐1 (MSI1) is an RNA‐binding protein that acts as a translation activator or repressor of target mRNAs. The best‐characterized MSI1 target is Numb mRNA, whose encoded protein negatively regulates Notch signaling. Additional MSI1 targets include the mRNAs for the tumor suppressor protein APC that regulates Wnt signaling and the cyclin‐dependent kinase inhibitor P21WAF−1. We hypothesized that increased expression of NUMB, P21 and APC, through inhibition of MSI1 RNA‐binding activity might be an effective way to simultaneously downregulate Wnt and Notch signaling, thus blocking the growth of a broad range of cancer cells. We used a fluorescence polarization assay to screen for small molecules that disrupt the binding of MSI1 to its consensus RNA binding site. One of the top hits was (−)‐gossypol (Ki = 476 ± 273 nM), a natural product from cottonseed, known to have potent anti‐tumor activity and which has recently completed Phase IIb clinical trials for prostate cancer. Surface plasmon resonance and nuclear magnetic resonance studies demonstrate a direct interaction of (−)‐gossypol with the RNA binding pocket of MSI1. We further showed that (−)‐gossypol reduces Notch/Wnt signaling in several colon cancer cell lines having high levels of MSI1, with reduced SURVIVIN expression and increased apoptosis/autophagy. Finally, we showed that orally administered (−)‐gossypol inhibits colon cancer growth in a mouse xenograft model. Our study identifies (−)‐gossypol as a potential small molecule inhibitor of MSI1‐RNA interaction, and suggests that inhibition of MSI1s RNA binding activity may be an effective anti‐cancer strategy.