Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin C. Muise-Helmericks is active.

Publication


Featured researches published by Robin C. Muise-Helmericks.


Journal of Biological Chemistry | 1998

Cyclin D expression is controlled post-transcriptionally via a phosphatidylinositol 3-kinase/Akt-dependent pathway.

Robin C. Muise-Helmericks; Grimes Hl; Alfonso Bellacosa; Malstrom Se; Philip N. Tsichlis; Neal Rosen

Cyclin D expression is regulated by growth factors and is necessary for the induction of mitogenesis. Herbimycin A, a drug that binds to Hsp90, induces the destruction of tyrosine kinases and causes the down-regulation of cyclin D and an Rb-dependent growth arrest in the G1phase of the cell cycle. We find that the induction of D-cyclin expression by serum and its repression by herbimycin A are regulated at the level of mRNA translation. Induction of cyclin D by serum occurs prior to the induction of its mRNA and does not require transcription. Herbimycin A repression is characterized by a decrease in the synthetic rate of D-cyclins prior to changes in mRNA expression and in the absence of changes in the half-life of the protein. This effect on D-cyclin translation is mediated via a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent pathway. PI 3-kinase inhibitors such as wortmannin and LY294002, and rapamycin, an inhibitor of FRAP/TOR, cause a decline in the level of D-cyclins, whereas inhibitors of mitogen-activated protein kinase kinase and farnesyltransferase do not. Cells expressing the activated, myristoylated form of Akt kinase, a target of PI 3-kinase, are refractory to the effects of herbimycin A or serum starvation on D-cyclin expression. These data suggest that serum induction of cyclin D expression results from enhanced translation of its mRNA and that this results from activation of a pathway that is dependent upon PI 3-kinase and Akt kinase.


Oncogene | 2000

Signal transduction and the Ets family of transcription factors.

John S. Yordy; Robin C. Muise-Helmericks

Cellular responses to environmental stimuli are controlled by a series of signaling cascades that transduce extracellular signals from ligand-activated cell surface receptors to the nucleus. Although most pathways were initially thought to be linear, it has become apparent that there is a dynamic interplay between signaling pathways that result in the complex pattern of cell-type specific responses required for proliferation, differentiation and survival. One group of nuclear effectors of these signaling pathways are the Ets family of transcription factors, directing cytoplasmic signals to the control of gene expression. This family is defined by a highly conserved DNA binding domain that binds the core consensus sequence GGAA/T. Signaling pathways such as the MAP kinases, Erk1 and 2, p38 and JNK, the PI3 kinases and Ca2+-specific signals activated by growth factors or cellular stresses, converge on the Ets family of factors, controlling their activity, protein partnerships and specification of downstream target genes. Interestingly, Ets family members can act as both upstream and downstream effectors of signaling pathways. As downstream effectors their activities are directly controlled by specific phosphorylations, resulting in their ability to activate or repress specific target genes. As upstream effectors they are responsible for the spacial and temporal expression or numerous growth factor receptors. This review provides a brief survey of what is known to date about how this family of transcription factors is regulated by cellular signaling with a special focus on Ras responsive elements (RREs), the MAP kinases (Erks, p38 and JNK) and Ca2+-specific pathways and includes a description of the multiple roles of Ets family members in the lymphoid system. Finally, we will discuss other potential mechanisms and pathways involved in the regulation of this important family of transcription factors.


The FASEB Journal | 2008

VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase

Gary L. Wright; Ioanna G. Maroulakou; Juanita Eldridge; Tiera L. Liby; Vijayalakshmi Sridharan; Philip N. Tsichlis; Robin C. Muise-Helmericks

The growth factor, vascular endothelial growth factor (VEGF), induces angiogenesis and promotes endothelial cell (EC) proliferation. Affymetrix gene array analyses show that VEGF stimulates the expression of a cluster of nuclear‐encoded mitochondrial genes, suggesting a role for VEGF in the regulation of mitochondrial biogenesis. We show that the serine threonine kinase Akt3 specifically links VEGF to mitochondrial biogenesis. A direct comparison of Akt1 vs. Akt3 gene silencing was performed in ECs and has uncovered a discrete role for Akt3 in the control of mitochondrial biogenesis. Silencing of Akt3, but not Akt1, results in a decrease in mitochondrial gene expression and mtDNA content. Nuclear‐encoded mitochondrial gene transcripts are also found to decrease when Akt3 expression is silenced. Concurrent with these changes in mitochondrial gene expression, lower O2 consumption was observed. VEGF stimulation of the major mitochondrial import protein TOM70 is also blocked by Akt3 inhibition. In support of a role for Akt3 in the regulation of mitochondrial biogenesis, Akt3 silencing results in the cytoplasmic accumulation of the master regulator of mitochondrial biogenesis, PGC‐1α, and a reduction in known PGC‐1α target genes. Finally, a subtle but significant, abnormal mitochondrial phenotype is observed in the brain tissue of AKT3 knockout mice. These results suggest that Akt3 is important in coordinating mitochondrial biogenesis with growth factor‐induced increases in cellular energy demands.—Wright, G. L., Maroulakou, I. G., Eldridge, J., Liby, T. L., Sridharan, V., Tsichlis, P. N., Muise‐Helmericks, R. C. VEGF stimulation of mitochondrial biogenesis: requirement of AKT3 kinase. FASEB J. 22, 3264–3275 (2008)


Annals of Surgery | 2009

Poly-N-Acetyl Glucosamine Nanofibers: A New Bioactive Material to Enhance Diabetic Wound Healing by Cell Migration and Angiogenesis

Saja S. Scherer; Giorgio Pietramaggiori; Jasmine Matthews; Samuel Perry; Anke Assmann; Adelaide M. Carothers; Marina Demcheva; Robin C. Muise-Helmericks; Arun Seth; John N. Vournakis; Robert Valeri; Thomas H. Fischer; Herbert B. Hechtman; Dennis P. Orgill

Introduction:In several fields of surgery, the treatment of complicated tissue defects is an unsolved clinical problem. In particular, the use of tissue scaffolds has been limited by poor revascularization and integration. In this study, we developed a polymer, poly-N-acetyl-glucosamine (sNAG), with bioactive properties that may be useful to overcome these limitations. Objective:To develop a scaffold-like membrane with bioactive properties and test the biologic effects in vitro and in vivo in diabetic wound healing. Methods:In vitro, cells–nanofibers interactions were tested by cell metabolism and migration assays. In vivo, full thickness wounds in diabetic mice (n = 15 per group) were treated either with sNAG scaffolds, with a cellulosic control material, or were left untreated. Wound healing kinetics, including wound reepithelialization and wound contraction as well as microscopic metrics such as tissue growth, cell proliferation (Ki67), angiogenesis (PECAM-1), cell migration (MAP-Kinase), and keratinocyte migration (p 63) were monitored over a period of 28 days. Messenger RNA levels related to migration (uPAR), angiogenesis (VEGF), inflammatory response (IL-1β), and extracellular matrix remodeling (MMP3 and 9) were measured in wound tissues. Results:sNAG fibers stimulated cell metabolism and the in vitro migratory activity of endothelial cells and fibroblasts. sNAG membranes profoundly accelerated wound closure mainly by reepithelialization and increased keratinocyte migration (7.5-fold), granulation tissue formation (2.8-fold), cell proliferation (4-fold), and vascularization (2.7-fold) compared with control wounds. Expression of markers of angiogenesis (VEGF), cell migration (uPAR) and ECM remodeling (MMP3, MMP9) were up-regulated in sNAG treated wounds compared with controls. Conclusions:The key mechanism of the bioactive membranes is the cell-nanofiber stimulatory interaction. Engineering of bioactive materials may represent the clinical solution for a number of complex tissue defects.


Journal of Investigative Dermatology | 2008

Akt blockade downregulates collagen and upregulates MMP1 in human dermal fibroblasts.

Andreea M. Bujor; Jaspreet Pannu; Shizhong Bu; Edwin A. Smith; Robin C. Muise-Helmericks; Maria Trojanowska

Acutely transforming retrovirus AKT8 in rodent T-cell lymphoma (Akt) is a serine/threonine kinase that plays important roles in survival, cell-cycle progression, and cell proliferation, and has recently been implicated in collagen regulation. The aim of this study was to determine the role of Akt in collagen deposition by normal dermal fibroblasts, and to determine the sensitivity of cultured systemic sclerosis (SSc) fibroblasts to Akt inhibition. We show that blockade of Akt using pharmacological inhibitors, small interfering RNA (siRNA), and a dominant-negative Akt mutant led to inhibition of the basal type I collagen production. Furthermore, inhibition of Akt upregulated basal matrix metalloproteinase 1 (MMP1) production and reversed the inhibitory effect of transforming growth factor-beta (TGF-beta) on MMP1 gene expression. In addition, SSc fibroblasts were more sensitive to Akt inhibition, with respect to collagen and MMP1 production. These findings suggest that in human dermal fibroblasts, Akt has dual profibrotic effects, increasing collagen synthesis and decreasing its degradation via downregulation of MMP1. Akt could directly contribute to elevated collagen in SSc fibroblasts and it may represent an attractive target for therapy of SSc fibrosis.


Journal of Vascular Research | 2008

Poly-N-acetyl glucosamine nanofibers regulate endothelial cell movement and angiogenesis: dependency on integrin activation of Ets1.

John N. Vournakis; Juanita Eldridge; Marina Demcheva; Robin C. Muise-Helmericks

Poly-N-acetyl glucosamine (pGlcNAc) nanofiber-derived materials effectively achieve hemostasis during surgical procedures. Treatment of cutaneous wounds with pGlcNAc in a diabetic mouse animal model causes marked increases in cell proliferation and angiogenesis. We sought to understand the effect of the pGlcNAc fibers on primary endothelial cells (EC) in culture and found that pGlcNAc induces EC motility. Cell motility induced by pGlcNAc fibers is blocked by antibodies directed against αVβ3 and α5β1 integrins, both known to play important roles in the regulation of EC motility, in vitroand in vivo. pGlcNAc treatment activates mitogen-activated protein kinase and increases Ets1, vascular endothelial growth factor (VEGF) and interleukin 1 (IL-1) expression. pGlcNAc activity is not secondary to its induction of VEGF; inhibition of the VEGF receptor does not inhibit the pGlcNAc-induced expression of Ets1 nor does pGlcNAc cause the activation of VEGF receptor. Both dominant negative and RNA interference inhibition of Ets1 blocks pGlcNAc-induced EC motility. Antibody blockade of integrin results in the inhibition of pGlcNAc-induced Ets1 expression. These findings support the hypothesis that pGlcNAc fibers induce integrin activation which results in the regulation of EC motility and thus in angiogenesis via a pathway dependent on the Ets1 transcription factor and demonstrate that Ets1 is a downstream mediator of integrin activation.


Oncogene | 2004

SP100 expression modulates ETS1 transcriptional activity and inhibits cell invasion

John S. Yordy; Runzhao Li; Victor Sementchenko; Huiping Pei; Robin C. Muise-Helmericks; Dennis K. Watson

The ETS1 transcription factor is a member of the Ets family of conserved sequence-specific DNA-binding proteins. ETS1 has been shown to play important roles in various cellular processes such as proliferation, differentiation, lymphoid development, motility, invasion and angiogenesis. These diverse roles of ETS1 are likely to be dependent on specific protein interactions. To identify proteins that interact with ETS1, a yeast two-hybrid screen was conducted. Here, we describe the functional interaction between SP100 and ETS1. SP100 protein interacts with ETS1 both in vitro and in vivo. SP100 is localized to nuclear bodies and ETS1 expression alters the nuclear body morphology in living cells. SP100 negatively modulates ETS1 transcriptional activation of the MMP1 and uPA promoters in a dose-dependent manner, decreases the expression of these endogenous genes, and reduces ETS1 DNA binding. Expression of SP100 inhibits the invasion of breast cancer cells and is induced by Interferon-α, which has been shown to inhibit the invasion of cancer cells. These data demonstrate that SP100 modulates ETS1-dependent biological processes.


The FASEB Journal | 2003

Coordinated functions of Akt/PKB and ETS1 in tubule formation

Kim R. Lavenburg; Jennifer Ivey; Tien Hsu; Robin C. Muise-Helmericks

We investigated the inter‐relationship between two downstream effectors of vascular endothelial growth factor (VEGF), the serine threonine kinase Akt (also known as protein kinase B) and the transcription factor ETS1, during tubulogenesis. Human endothelial cell culture and the in vivo Drosophila tracheal systems are employed in comparative analysis. We show that VEGF stimulates the expression of ETS1 through a phosphatidylinositol‐3‐kinase (PI3K)/Akt‐ dependent pathway in primary endothelial cells. Activation of Akt results in vessel formation in vitro, a process that is blocked by expression of antisense ETS1. The functional relationship between ETS and Akt was then tested in the homologous tubular system in Drosophila. Contrary to expectation, ETS1 and Akt did not form a linear positive regulatory pathway in vivo. Instead, genetic analyses suggest that the Drosophila ETS1 homologue Pointed is required for cell motility per se while Drosophila Akt (Dakt1) is responsible for organized and restricted cell movement that is essential for tubule formation. Taken together, our results show that ETS1 and Akt control different aspects of cell motility that are integrated in the precise regulation of vascular tubule formation.


International Journal of Cancer | 2012

Akt3 controls vascular endothelial growth factor secretion and angiogenesis in ovarian cancer cells

Tiera A. Liby; Perry Spyropoulos; Haley Buff Lindner; Juanita Eldridge; Craig Beeson; Tien Hsu; Robin C. Muise-Helmericks

The PI3 kinase/Akt pathway is commonly deregulated in human cancers, functioning in such processes as proliferation, glucose metabolism, survival and motility. We have previously described a novel function for one of the Akt isoforms (Akt3) in primary endothelial cells: the control of VEGF‐induced mitochondrial biogenesis. We sought to determine if Akt3 played a similar role in carcinoma cells. Because the PI3 kinase/Akt pathway has been strongly implicated as a key regulator in ovarian carcinoma, we tested the role of Akt3 in this tumor type. Silencing of Akt3 by shRNA did not cause an overt reduction in mitochondrial gene expression in a series of PTEN positive ovarian cancer cells. Rather, we find that blockade of Akt3, results in smaller, less vascularized tumors in a xenograft mouse model that is correlated with a reduction in VEGF expression. We find that blockade of Akt3, but not Akt1, results in a reduction in VEGF secretion and retention of VEGF protein in the endoplasmic reticulum (ER). The reduction in secretion under conditions of Akt3 blockade is, at least in part, due to the down regulation of the resident golgi protein and reported tumor cell marker, RCAS1. Conversely, over‐expression of Akt3 results in an increase in RCAS1 expression and in VEGF secretion. Silencing of RCAS1 using siRNA inhibits VEGF secretion. These findings suggest an important role for Akt3 in the regulation of RCAS1 and VEGF secretion in ovarian cancer cells.


Developmental Biology | 2013

VEGF-mediated phosphorylation of eNOS regulates angioblast and embryonic endothelial cell proliferation

Carmine Gentile; Robin C. Muise-Helmericks; Christopher J. Drake

To evaluate potential roles of nitric oxide (NO) in the regulation of the endothelial lineage and neovascular processes (vasculogenesis and angiogenesis) we evaluated endothelial nitric oxide synthase (eNOS) and phosphorylated eNOS (p-eNOS) expression in 7.2-8.5 days post-coitum (dpc) mouse embryos. Analysis revealed that p-eNOS((S1177)) but not P-eNOS((S617)) or P-eNOS((T495)) was expressed in a subpopulation of angioblasts (TAL-1(+)/Flk-1(+)/CD31(-)/CD34(-)/VE-Cadherin(-)) at 7.2 dpc. A role of the VEGF/Akt1/eNOS signaling pathway in the regulation of the endothelial cell (EC) lineage was suggested by the strong correlation observed between cell division and p-eNOS((S1177)) expression in both angioblasts and embryonic endothelial cells (EECs, TAL-1(+)/Flk-1(+)/CD31(+)/CD34(+)/VE-Cadherin(+)). Our studies using Akt1 null mouse embryos show a reduction in p-eNOS((S1177)) expression in angioblast and EECs that is correlated with a decrease in endothelial cell proliferation and results in changes in VEGF-induced vascular patterning. Further, we show that VEGF-mediated cell proliferation in Flk-1(+) cells in allantoic cultures is decreased by pharmacological inhibitors of the VEGF/Akt1/eNOS signaling pathways. Taken together, our findings suggest that VEGF-mediated eNOS phosphorylation on Ser1177 regulates angioblast and EEC division, which underlies the formation of blood vessels and vascular networks.

Collaboration


Dive into the Robin C. Muise-Helmericks's collaboration.

Top Co-Authors

Avatar

Marina Demcheva

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

John N. Vournakis

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Arun Seth

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar

Juanita Eldridge

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Haley Buff Lindner

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Craig Beeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Dennis K. Watson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda C. LaRue

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Brayden Oakes

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge