Robin D. Clugston
University of Alberta
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robin D. Clugston.
Nutrients | 2011
Diana N. D'Ambrosio; Robin D. Clugston; William S. Blaner
Retinoids are required for maintaining many essential physiological processes in the body, including normal growth and development, normal vision, a healthy immune system, normal reproduction, and healthy skin and barrier functions. In excess of 500 genes are thought to be regulated by retinoic acid. 11-cis-retinal serves as the visual chromophore in vision. The body must acquire retinoid from the diet in order to maintain these essential physiological processes. Retinoid metabolism is complex and involves many different retinoid forms, including retinyl esters, retinol, retinal, retinoic acid and oxidized and conjugated metabolites of both retinol and retinoic acid. In addition, retinoid metabolism involves many carrier proteins and enzymes that are specific to retinoid metabolism, as well as other proteins which may be involved in mediating also triglyceride and/or cholesterol metabolism. This review will focus on recent advances for understanding retinoid metabolism that have taken place in the last ten to fifteen years.
American Journal of Pathology | 2003
Jörg Mey; Randal P. Babiuk; Robin D. Clugston; Wei Zhang; John J. Greer
Currently, the etiology of the serious developmental anomaly congenital diaphragmatic hernia (CDH) is unknown. We have used an animal model of CDH to address this issue. We characterized four separate teratogens that produced diaphragmatic defects in embryonic rats that are similar to those in infants with CDH. We then tested the hypothesis that all these agents share the common mechanism of perturbing the retinoid-signaling pathway. Specifically, inhibition of retinal dehydrogenase-2 (RALDH2), a key enzyme necessary for the production of retinoic acid and that is expressed in the developing diaphragm, was assayed by measuring retinoic acid production in cytosolic extracts from an oligodendrocyte cell line. The following compounds all induce posterolateral defects in the rat diaphragm; nitrofen, 4-biphenyl carboxylic acid, bisdiamine, and SB-210661. Importantly, we demonstrate that they all share the common mechanism of inhibiting RALDH2. These data provide an important component of mounting evidence suggesting that the retinoid system warrants consideration in future studies of the etiology of CDH.
The Journal of Comparative Neurology | 2003
Randal P. Babiuk; Wei Zhang; Robin D. Clugston; Douglas W. Allan; John J. Greer
Textbooks of embryology provide a standard set of drawings and text reflecting the traditional interpretation of phrenic nerve and diaphragm development based on anatomical dissections of embryonic tissue. Here, we revisit this issue, taking advantage of immunohistochemical markers for muscle precursors in conjunction with mouse mutants to perform a systematic examination of phrenic‐diaphragm embryogenesis. This includes examining the spatiotemporal relationship of phrenic axon outgrowth and muscle precursors during different stages of myogenesis. Additionally, mutant mice lacking c‐met receptors were used to visualize the mesenchymal substratum of the developing diaphragm in the absence of myogenic cells. We found no evidence for contributions to the diaphragm musculature from the lateral body wall, septum transversum, or esophageal mesenchyme, as standard dogma would state. Nor did the data support the hypothesis that the crural diaphragm is of distinct embryological origins. Rather, we found that myogenic cells and axons destined to form the neuromuscular component of the diaphragm coalesce within the pleuroperitoneal fold (PPF). It is the expansion of these components of the PPF that leads to the formation of the diaphragm. Furthermore, we extended these studies to examine the developing diaphragm in an animal model of congenital diaphragmatic hernia (CDH). We find that malformation of the PPF mesenchymal substratum leads to the defect characteristic of CDH. In summary, the data demonstrates that a significant revision of narratives describing normal and pathological development of the diaphragm is warranted. J. Comp. Neurol. 455:477–487, 2003.
Journal of Lipid Research | 2011
Robin D. Clugston; Hongfeng Jiang; Man Xia Lee; Roseann Piantedosi; Jason J. Yuen; Rajasekhar Ramakrishnan; Michael J. Lewis; Max E. Gottesman; Li-Shin Huang; Ira J. Goldberg; Paul D. Berk; William S. Blaner
Chronic alcohol consumption is associated with fatty liver disease in mammals. The object of this study was to gain an understanding of dysregulated lipid metabolism in alcohol-fed C57BL/6 mice using a targeted lipidomic approach. Liquid chromatography tandem mass spectrometry was used to analyze several lipid classes, including free fatty acids, fatty acyl-CoAs, fatty acid ethyl esters, sphingolipids, ceramides, and endocannabinoids, in plasma and liver samples from control and alcohol-fed mice. The interpretation of lipidomic data was augmented by gene expression analyses for important metabolic enzymes in the lipid pathways studied. Alcohol feeding was associated with i) increased hepatic free fatty acid levels and decreased fatty acyl-CoA levels associated with decreased mitochondrial fatty acid oxidation and decreased fatty acyl-CoA synthesis, respectively; ii) increased hepatic ceramide levels associated with higher levels of the precursor molecules sphingosine and sphinganine; and iii) increased hepatic levels of the endocannabinoid anandamide associated with decreased expression of its catabolic enzyme fatty acid amide hydrolase. The unique combination of lipidomic and gene expression analyses allows for a better mechanistic understanding of dysregulated lipid metabolism in the development of alcoholic fatty liver disease.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2008
Robin D. Clugston; Wei Zhang; John J. Greer
Congenital diaphragmatic hernia (CDH) is a frequently occurring birth defect and a source of potentially fatal neonatal respiratory distress. Recently, through the application of detailed karyotyping methods, several CDH-critical regions within the human genome have been identified. These regions typically contain several genes. Here we focused on genes from 15q26, the best-characterized CDH-critical region, as well as FOG2 and GATA4, genes singled out from CDH-critical regions at 8q22-8q23 and 8p23.1, respectively. We tested the hypothesis that these putative CDH-related genes are expressed within the developing diaphragm at the time of the hypothesized initial defect. Our results show that 15q26 contains a cluster of genes that are expressed in the developing rodent diaphragm, consistent with an association between deletions in this region and CDH. We then examined the protein expression pattern of positively identified genes within the developing diaphragm. Two major themes emerged. First, those factors strongly associated with CDH are expressed only in the nonmuscular, mesenchymal component of the diaphragm, supporting the hypothesis that CDH has its origins in a mesenchymal defect. Second, these factors are all coexpressed in the same cells. This suggests that cases of CDH with unique genetic etiology may lead to a common defect in these cells and supports the hypothesis that these factors may be members of a common pathway. This study is the first to provide a detailed examination of how genes associated with CDH are expressed in the developing diaphragm and provides an important foundation for understanding how the deletion of specific genes may contribute to abnormal diaphragm formation.
Birth Defects Research Part A-clinical and Molecular Teratology | 2009
Robin D. Clugston; Wei Zhang; John J. Greer
Congenital diaphragmatic hernia (CDH) is a frequently occurring cause of neonatal respiratory distress and is associated with high mortality and long-term morbidity. Evidence from animal models suggests that CDH has its origins in the malformation of the pleuroperitoneal fold (PPF), a key structure in embryonic diaphragm formation. The aims of this study were to characterize the embryogenesis of the PPF in rats and humans, and to determine the potential mechanism that leads to abnormal PPF development in the nitrofen model of CDH. Analysis of rat embryos, and archived human embryo sections, allowed the timeframe of PPF formation to be determined for both species, thus delineating a critical period of diaphragm development in relation to CDH. Experiments on nitrofen-exposed NIH 3T3 cells in vitro led us to hypothesize that nitrofen might cause diaphragmatic hernia in vivo by two possible mechanisms: through decreased cell proliferation or by inducing apoptosis. Data from nitrofen-exposed rat embryos indicates that the primary mechanism of nitrofen teratogenesis in the PPF is through decreased cell proliferation. This study provides novel insight into the embryogenesis of the PPF in rats and humans, and it indicates that impaired cell proliferation might contribute to abnormal diaphragm development in the nitrofen model of CDH.
American Journal of Respiratory Cell and Molecular Biology | 2010
Robin D. Clugston; Wei Zhang; Susana Álvarez; Angel R. de Lera; John J. Greer
Congenital diaphragmatic hernia (CDH) is a frequently occurring source of severe neonatal respiratory distress. It has been hypothesized that abnormal retinoid signaling contributes to the etiology of this developmental anomaly. Here, we use rodent models toward specifically understanding the role of retinoid signaling in the developing diaphragm and how its perturbation is a common mechanism in drug-induced CDH. This includes monitoring of retinoic acid (RA) response element (RARE) activation with RARE-lacZ mice, RA supplementation studies, systematic analyses of the expression profile of key elements in the RA signaling pathway within the developing diaphragm, and the in utero delivery of a RA receptor (RAR) antagonist. These data demonstrate the timing of RARE perturbation by CDH-inducing teratogens and the efficacy of RA supplementation. Furthermore, a detailed profile of retinoid binding proteins, synthetic enzymes, and retinoid receptors within primordial diaphragm cells was obtained. The expression profile of RAR-alpha was particularly striking in regard to its overlap with the regions of primordial diaphragm affected in multiple CDH models. Blocking of RAR signaling with the pan-RAR antagonist BMS493 induced a very high degree of CDH, with a marked left-right sidedness that depended on the timing of drug delivery. Collectively, these data demonstrate that retinoid signaling is essential for normal diaphragm development, providing further support to the hypothesis that abnormalities related to the retinoid signaling pathway cause diaphragmatic defects. This study also yielded a novel experimental model that should prove particularly useful for further studies of CDH.
Scientific Reports | 2017
William S. Blaner; Madeleine Ann Gao; Hongfeng Jiang; Timothy R. A. Dalmer; Xueyuan J. Hu; Henry N. Ginsberg; Robin D. Clugston
Retinoic acid, an active metabolite of dietary vitamin A, acts as a ligand for nuclear receptor transcription factors with more than 500 known target genes. It is becoming increasingly clear that alcohol has a significant impact on cellular retinoic acid metabolism, with resultant effects on its function. Here, we test the hypothesis that chronic alcohol consumption impairs retinoic acid signaling in brown adipose tissue (BAT), leading to impaired BAT function and thermoregulation. All studies were conducted in age-matched, male mice consuming alcohol-containing liquid diets. Alcohol’s effect on BAT was assessed by histology, qPCR, HPLC, LC/MS and measures of core body temperature. Our data show that chronic alcohol consumption decreases BAT mass, with a resultant effect on thermoregulation. Follow-up mechanistic studies reveal a decreased triglyceride content in BAT, as well as impaired retinoic acid homeostasis, associated with decreased BAT levels of retinoic acid in alcohol-consuming mice. Our work highlights a hitherto uncharacterized effect of alcohol on BAT function, with possible implications for thermoregulation and energy metabolism in drinkers. Our data indicate that alcohol’s effects on brown adipose tissue may be mediated through altered retinoic acid signaling.
Journal of Clinical Investigation | 2014
Bing Zhang; Wenyuan Xiao; Hong Qiu; Fuming Zhang; Heather A. Moniz; Alexander Jaworski; Eduard Condac; Gerardo Gutierrez-Sanchez; Christian Heiss; Robin D. Clugston; Parastoo Azadi; John J. Greer; Carl Bergmann; Kelley W. Moremen; Dean Li; Robert J. Linhardt; Jeffrey D. Esko; Lianchun Wang
Congenital diaphragmatic hernia (CDH) is a common birth malformation with a heterogeneous etiology. In this study, we report that ablation of the heparan sulfate biosynthetic enzyme NDST1 in murine endothelium (Ndst1ECKO mice) disrupted vascular development in the diaphragm, which led to hypoxia as well as subsequent diaphragm hypoplasia and CDH. Intriguingly, the phenotypes displayed in Ndst1ECKO mice resembled the developmental defects observed in slit homolog 3 (Slit3) knockout mice. Furthermore, introduction of a heterozygous mutation in roundabout homolog 4 (Robo4), the gene encoding the cognate receptor of SLIT3, aggravated the defect in vascular development in the diaphragm and CDH. NDST1 deficiency diminished SLIT3, but not ROBO4, binding to endothelial heparan sulfate and attenuated EC migration and in vivo neovascularization normally elicited by SLIT3-ROBO4 signaling. Together, these data suggest that heparan sulfate presentation of SLIT3 to ROBO4 facilitates initiation of this signaling cascade. Thus, our results demonstrate that loss of NDST1 causes defective diaphragm vascular development and CDH and that heparan sulfate facilitates angiogenic SLIT3-ROBO4 signaling during vascular development.
Physiological and Biochemical Zoology | 2011
Shannon J. Simpson; Sharon Jayne Flecknoe; Robin D. Clugston; John J. Greer; Stuart B. Hooper; Peter B. Frappell
Marsupials are born with structurally immature lungs and rely, to varying degrees, on cutaneous gas exchange. With a gestation of 13 d and a birth weight of 13 mg, the fat-tailed dunnart (Sminthopsis crassicaudata) is one of the smallest and most immature marsupial newborns. We determined that the skin is almost solely responsible for gas exchange in the early neonatal period. Indeed, fewer than 35% of newborn dunnarts were observed to make any respiratory effort on the day of birth, with pulmonary ventilation alone not meeting the demand for oxygen until approximately 35 d postpartum. Despite the lack of pulmonary ventilation, the phrenic nerve had made contact with the diaphragm, and the respiratory epithelium was sufficiently developed to support gas exchange on the day of birth. Both type I and type II (surfactant-producing) alveolar epithelial cells were present, with fewer than 7% of the cells resembling undifferentiated alveolar epithelial precursor cells. The type I epithelial cells did, however, display thickened cytoplasmic extensions, leading to a high diffusion distance for oxygen. In addition, the architecture of the lung was immature, resembling the early canalicular stage, with alveolarization not commencing until 45 d postpartum. The pulmonary vasculature was also immature, with a centrally positioned single-capillary layer not evident until 100 d postbirth. These structural limitations may impede efficient pulmonary gas exchange, forcing the neonatal fat-tailed dunnart to rely predominately on its skin, a phenomenon supported by a low metabolic rate and small size.