Robin J. Leatherbarrow
Imperial College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Robin J. Leatherbarrow.
Molecular Immunology | 1985
Robin J. Leatherbarrow; Thomas William Rademacher; Raymond A. Dwek; J.M. Woof; Anthony Clark; Dennis R. Burton; Neil Richardson; Arnold Feinstein
Aglycosylated monoclonal anti-DNP mouse IgG2a produced in the presence of tunicamycin was compared with the native monoclonal IgG2a with respect to its ability to interact with the first component of complement, C1, and to compete with human IgG for binding to human monocyte Fc receptors. The aglycosylated IgG2a was found to bind subcomponent C1q with an equivalent capacity to the native IgG2a, but the dissociation constant was found to be increased three-fold. When activation of C1 by the glycosylated and aglycosylated IgG2a was compared, the rate of C1 activation by the aglycosylated IgG2a was reduced approximately three-fold. In contrast aglycosylation was accompanied by a large decrease (greater than or equal to 50-fold) in the apparent binding constant of monomeric IgG2a to human monocytes. The data suggest that the aglycosylated IgG2a has a structure which differs in the CH2 domain from the native IgG2a, and that the heterogeneous N-linked oligosaccharides of this monoclonal IgG2a which occur at a conserved position in the CH2 domain play a role in maintaining the integrity of its monocyte-binding site. This lack of monocyte binding may result either from a localized conformational change occurring in a single CH2 domain or from an alteration in the CH2-CH2 cross-domain architecture which is normally structured by a pair of opposing and interacting oligosaccharides. The minimal changes in C1q binding and C1 activation suggest that the oligosaccharides are, at most, indirectly involved in these events.
Organic and Biomolecular Chemistry | 2008
Panumart Thongyoo; Núria Roqué-Rosell; Robin J. Leatherbarrow; Edward W. Tate
The naturally-occurring cyclic cystine-knot microprotein trypsin inhibitors MCoTI-I and MCoTI-II have been synthesised using both thia-zip native chemical ligation and a biomimetic strategy featuring chemoenzymatic cyclisation by an immobilised protease. Engineered analogues have been produced containing a range of substitutions at the P1 position that redirect specificity towards alternative protease targets whilst retaining excellent to moderate affinity. Furthermore, we report an MCoTI analogue that is a selective low-microM inhibitor of foot-and-mouth-disease virus (FMDV) 3C protease, the first reported peptide-based inhibitor of this important viral enzyme.
Journal of Medicinal Chemistry | 2009
Panumart Thongyoo; Camille Bonomelli; Robin J. Leatherbarrow; Edward W. Tate
MCoTI-II is a member of a class of microproteins known as cyclotides that possess a macrolactam-cystine knot scaffold imparting exceptional physiological stability and structural rigidity. Modification of residues in the active loop and engineered truncations have resulted in MCoTI-II analogues that possess potent activity against two therapeutically significant serine proteases: beta-tryptase and human leukocyte elastase. These results suggest that MCoTI-II is a versatile scaffold for the development of protease inhibitors against targets in inflammatory disease.
Nature Chemistry | 2014
Megan H. Wright; Barbara Clough; Rackham; Kaveri Rangachari; James A. Brannigan; Munira Grainger; David K. Moss; Andrew R. Bottrill; William P. Heal; Malgorzata Broncel; Remigiusz A. Serwa; Declan Brady; David J. Mann; Robin J. Leatherbarrow; Rita Tewari; Anthony J. Wilkinson; Anthony A. Holder; Edward W. Tate
Malaria is an infectious disease caused by parasites of the genus Plasmodium, which leads to approximately one million deaths per annum worldwide. Chemical validation of new antimalarial targets is urgently required in view of rising resistance to current drugs. One such putative target is the enzyme N-myristoyltransferase, which catalyses the attachment of the fatty acid myristate to protein substrates (N-myristoylation). Here, we report an integrated chemical biology approach to explore protein myristoylation in the major human parasite P. falciparum, combining chemical proteomic tools for identification of the myristoylated and glycosylphosphatidylinositol-anchored proteome with selective small-molecule N-myristoyltransferase inhibitors. We demonstrate that N-myristoyltransferase is an essential and chemically tractable target in malaria parasites both in vitro and in vivo, and show that selective inhibition of N-myristoylation leads to catastrophic and irreversible failure to assemble the inner membrane complex, a critical subcellular organelle in the parasite life cycle. Our studies provide the basis for the development of new antimalarials targeting N-myristoyltransferase.
Trends in Biochemical Sciences | 1986
Alan R. Fersht; Robin J. Leatherbarrow; Timothy N. C. Wells
Abstract Dissection of the active site of the tyrosyl-tRNA synthetase has revealed the roles of individual side chains at each stage in the formation of tyrosyl adenylate. Catalysis results from a series of small interactions with the enzyme that conspire to ease the reagents into the transition state and then stabilize the high energy intermediate.
Journal of Virology | 2007
Trevor R. Sweeney; Núria Roqué-Rosell; James R. Birtley; Robin J. Leatherbarrow; Stephen Curry
ABSTRACT The 3C protease (3Cpro) from foot-and-mouth disease virus (FMDV), the causative agent of a widespread and economically devastating disease of domestic livestock, is a potential target for antiviral drug design. We have determined the structure of a new crystal form of FMDV 3Cpro, a chymotrypsin-like cysteine protease, which reveals features that are important for catalytic activity. In particular, we show that a surface loop which was disordered in previous structures adopts a β-ribbon structure that is conformationally similar to equivalent regions on other picornaviral 3C proteases and some serine proteases. This β-ribbon folds over the peptide binding cleft and clearly contributes to substrate recognition. Replacement of Cys142 at the tip of the β-ribbon with different amino acids has a significant impact on enzyme activity and shows that higher activity is obtained with more hydrophobic side chains. Comparison of the structure of FMDV 3Cpro with homologous enzyme-peptide complexes suggests that this correlation arises because the side chain of Cys142 contacts the hydrophobic portions of the P2 and P4 residues in the peptide substrate. Collectively, these findings provide compelling evidence for the role of the β-ribbon in catalytic activity and provide valuable insights for the design of FMDV 3Cpro inhibitors.
Journal of Molecular Biology | 2010
James A. Brannigan; Barbara A. Smith; Zhiyong Yu; Andrzej M. Brzozowski; Michael R. Hodgkinson; Asher Maroof; Helen P. Price; Franziska Meier; Robin J. Leatherbarrow; Edward W. Tate; Deborah F. Smith; Anthony J. Wilkinson
N-Myristoyltransferase (NMT) catalyses the attachment of the 14-carbon saturated fatty acid, myristate, to the amino-terminal glycine residue of a subset of eukaryotic proteins that function in multiple cellular processes, including vesicular protein trafficking and signal transduction. In these pathways, N-myristoylation facilitates association of substrate proteins with membranes or the hydrophobic domains of other partner peptides. NMT function is essential for viability in all cell types tested to date, demonstrating that this enzyme has potential as a target for drug development. Here, we provide genetic evidence that NMT is likely to be essential for viability in insect stages of the pathogenic protozoan parasite, Leishmania donovani, causative agent of the tropical infectious disease, visceral leishmaniasis. The open reading frame of L. donovaniNMT has been amplified and used to overproduce active recombinant enzyme in Escherichia coli, as demonstrated by gel mobility shift assays of ligand binding and peptide-myristoylation activity in scintillation proximity assays. The purified protein has been crystallized in complex with the non-hydrolysable substrate analogue S-(2-oxo)pentadecyl-CoA, and its structure was solved by molecular replacement at 1.4 Å resolution. The structure has as its defining feature a 14-stranded twisted β-sheet on which helices are packed so as to form an extended and curved substrate-binding groove running across two protein lobes. The fatty acyl-CoA is largely buried in the N-terminal lobe, its binding leading to the loosening of a flap, which in unliganded NMT structures, occludes the protein substrate binding site in the carboxy-terminal lobe. These studies validate L. donovani NMT as a potential target for development of new therapeutic agents against visceral leishmaniasis.
ChemBioChem | 2009
Monpichar Srisa-Art; Dong-Ku Kang; Jongin Hong; Hyun Woo Park; Robin J. Leatherbarrow; Joshua B. Edel; Soo-Ik Chang; Andrew J. deMello
Every little drop: The KD values of angiogenin (ANG) interactions as shown by FRET analysis of thousands of pL‐sized droplets agree with data from bulk‐fluorescence polarization measurements. Importantly, the use of fluorophores does not affect the activity of ANG or the binding of anti‐ANG antibodies to ANG. Such an experimental platform could be applied to the high‐throughput analysis of protein–protein interactions.
Biochemical Journal | 2006
Chrysoula Panethymitaki; Paul W. Bowyer; Helen P. Price; Robin J. Leatherbarrow; Katherine A. Brown; Deborah F. Smith
The eukaryotic enzyme NMT (myristoyl-CoA:protein N-myristoyltransferase) has been characterized in a range of species from Saccharomyces cerevisiae to Homo sapiens. NMT is essential for viability in a number of human pathogens, including the fungi Candida albicans and Cryptococcus neoformans, and the parasitic protozoa Leishmania major and Trypanosoma brucei. We have purified the Leishmania and T. brucei NMTs as active recombinant proteins and carried out kinetic analyses with their essential fatty acid donor, myristoyl-CoA and specific peptide substrates. A number of inhibitory compounds that target NMT in fungal species have been tested against the parasite enzymes in vitro and against live parasites in vivo. Two of these compounds inhibit TbNMT with IC50 values of <1 microM and are also active against mammalian parasite stages, with ED50 (the effective dose that allows 50% cell growth) values of 16-66 microM and low toxicity to murine macrophages. These results suggest that targeting NMT could be a valid approach for the development of chemotherapeutic agents against infectious diseases including African sleeping sickness and Nagana.
FEBS Letters | 1983
Robin J. Leatherbarrow; Raymond A. Dwek
Aglycosylated IgG produced by hybridoma cells cultured in the presence of tunicamycin was compared with normal IgG for its ability to bind to staphylococcal protein A. No differences were found in binding or elution profiles. It is concluded that aglycosylation does not produce major structural alterations at the CH2–CH3 interface of the Fc region of IgG.