Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robin J. Ziegler is active.

Publication


Featured researches published by Robin J. Ziegler.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Effective gene therapy in an authentic model of Tay-Sachs-related diseases

M. Begoña Cachón-González; Susan Z. Wang; Andy G. Lynch; Robin J. Ziegler; Seng H. Cheng; Timothy M. Cox

Tay-Sachs disease is a prototypic neurodegenerative disease. Lysosomal storage of GM2 ganglioside in Tay-Sachs and the related disorder, Sandhoff disease, is caused by deficiency of β-hexosaminidase A, a heterodimeric protein. Tay-Sachs-related diseases (GM2 gangliosidoses) are incurable, but gene therapy has the potential for widespread correction of the underlying lysosomal defect by means of the secretion-recapture cellular pathway for enzymatic complementation. Sandhoff mice, lacking the β-subunit of hexosaminidase, manifest many signs of classical human Tay-Sachs disease and, with an acute course, die before 20 weeks of age. We treated Sandhoff mice by stereotaxic intracranial inoculation of recombinant adeno-associated viral vectors encoding the complementing human β-hexosaminidase α and β subunit genes and elements, including an HIV tat sequence, to enhance protein expression and distribution. Animals survived for >1 year with sustained, widespread, and abundant enzyme delivery in the nervous system. Onset of the disease was delayed with preservation of motor function; inflammation and GM2 ganglioside storage in the brain and spinal cord was reduced. Gene delivery of β-hexosaminidase A by using adeno-associated viral vectors has realistic potential for treating the human Tay-Sachs-related diseases.


Molecular Therapy | 2009

Glycoengineered Acid α-Glucosidase With Improved Efficacy at Correcting the Metabolic Aberrations and Motor Function Deficits in a Mouse Model of Pompe Disease

Yunxiang Zhu; Ji-Lei Jiang; Nathan K. Gumlaw; Jinhua Zhang; Scott D. Bercury; Robin J. Ziegler; Karen Lee; Mariko Kudo; William M. Canfield; Timothy Edmunds; Canwen Jiang; Robert J. Mattaliano; Seng H. Cheng

Improving the delivery of therapeutics to disease-affected tissues can increase their efficacy and safety. Here, we show that chemical conjugation of a synthetic oligosaccharide harboring mannose 6-phosphate (M6P) residues onto recombinant human acid alpha-glucosidase (rhGAA) via oxime chemistry significantly improved its affinity for the cation-independent mannose 6-phosphate receptor (CI-MPR) and subsequent uptake by muscle cells. Administration of the carbohydrate-remodeled enzyme (oxime-neo-rhGAA) into Pompe mice resulted in an approximately fivefold higher clearance of lysosomal glycogen in muscles when compared to the unmodified counterpart. Importantly, treatment of immunotolerized Pompe mice with oxime-neo-rhGAA translated to greater improvements in muscle function and strength. Treating older, symptomatic Pompe mice also reduced tissue glycogen levels but provided only modest improvements in motor function. Examination of the muscle pathology suggested that the poor response in the older animals might have been due to a reduced regenerative capacity of the skeletal muscles. These findings lend support to early therapeutic intervention with a targeted enzyme as important considerations in the management of Pompe disease.Improving the delivery of therapeutics to disease-affected tissues can increase their efficacy and safety. Here, we show that chemical conjugation of a synthetic oligosaccharide harboring mannose 6-phosphate (M6P) residues onto recombinant human acid α-glucosidase (rhGAA) via oxime chemistry significantly improved its affinity for the cation-independent mannose 6-phosphate receptor (CI-MPR) and subsequent uptake by muscle cells. Administration of the carbohydrate-remodeled enzyme (oxime-neo-rhGAA) into Pompe mice resulted in an approximately fivefold higher clearance of lysosomal glycogen in muscles when compared to the unmodified counterpart. Importantly, treatment of immunotolerized Pompe mice with oxime-neo-rhGAA translated to greater improvements in muscle function and strength. Treating older, symptomatic Pompe mice also reduced tissue glycogen levels but provided only modest improvements in motor function. Examination of the muscle pathology suggested that the poor response in the older animals might have been due to a reduced regenerative capacity of the skeletal muscles. These findings lend support to early therapeutic intervention with a targeted enzyme as important considerations in the management of Pompe disease.


Human Gene Therapy | 1999

Correction of Enzymatic and Lysosomal Storage Defects in Fabry Mice by Adenovirus-Mediated Gene Transfer

Robin J. Ziegler; Nelson S. Yew; Chester Li; Maribeth Cherry; Patricia Berthelette; Helen Romanczuk; Yiannis A. Ioannou; Kenneth M. Zeidner; Robert J. Desnick; Seng H. Cheng

Fabry disease is a recessive, X-linked disorder caused by a deficiency of the lysosomal hydrolase alpha-galactosidase A. Deficiency of this enzyme results in progressive deposition of the glycosphingolipid globotriaosylceramide (GL-3) in the vascular lysosomes, with resultant distension of the organelle. The demonstration of a secretory pathway for lysosomal enzymes and their subsequent recapture by distant cells through the mannose 6-phosphate receptor pathway has provided a rationale for somatic gene therapy of lysosomal storage disorders. Toward this end, recombinant adenoviral vectors encoding human alpha-galactosidase A (Ad2/CEHalpha-Gal, Ad2/CMVHIalpha-Gal) were constructed and injected intravenously into Fabry knockout mice. Administration of Ad2/CEHalpha-Gal to the Fabry mice resulted in an elevation of alpha-galactosidase A activity in all tissues, including the liver, lung, kidney, heart, spleen, and muscle, to levels above those observed in normal animals. However, enzymatic expression declined rapidly such that by 12 weeks, only 10% of the activity observed on day 3 remained. Alpha-galactosidase A detected in the plasma of injected animals was in a form that was internalized by Fabry fibroblasts grown in culture. Such internalization occurred via the mannose 6-phosphate receptors. Importantly, concomitant with the increase in enzyme activity was a significant reduction in GL-3 content in all tissues to near normal levels for up to 6 months posttreatment. However, as expression of alpha-galactosidase A declined, low levels of GL-3 reaccumulated in some of the tissues at 6 months. For protracted treatment, we showed that readministration of recombinant adenovirus vectors could be facilitated by transient immunosuppression using a monoclonal antibody against CD40 ligand (MR1). Together, these data demonstrate that the defects in alpha-galactosidase A activity and lysosomal storage of GL-3 in Fabry mice can be corrected by adenovirus-mediated gene transfer. This suggests that gene replacement therapy represents a viable approach for the treatment of Fabry disease and potentially other lysosomal storage disorders.


Molecular Therapy | 2010

Preexisting Immunity and Low Expression in Primates Highlight Translational Challenges for Liver-directed AAV8-mediated Gene Therapy

Gregory D Hurlbut; Robin J. Ziegler; Jennifer B. Nietupski; Joseph Foley; Lisa Woodworth; Elizabeth Meyers; Scott D. Bercury; Nilesh Pande; David W. Souza; Mark Bree; Michael Lukason; John Marshall; Seng H. Cheng; Ronald K. Scheule

Liver-directed gene therapy with adeno-associated virus (AAV) vectors effectively treats mouse models of lysosomal storage diseases (LSDs). We asked whether these results were likely to translate to patients. To understand to what extent preexisting anti-AAV8 antibodies could impede AAV8-mediated liver transduction in primates, commonly preexposed to AAV, we quantified the effects of preexisting antibodies on liver transduction and subsequent transgene expression in mouse and nonhuman primate (NHP) models. Using the highest viral dose previously reported in a clinical trial, passive transfer of NHP sera containing relatively low anti-AAV8 titers into mice blocked liver transduction, which could be partially overcome by increasing vector dose tenfold. Based on this and a survey of anti-AAV8 titers in 112 humans, we predict that high-dose systemic gene therapy would successfully transduce liver in >50% of human patients. However, although high-dose AAV8 administration to mice and monkeys with equivalent anti-AAV8 titers led to comparable liver vector copy numbers, the resulting transgene expression in primates was ~1.5-logs lower than mice. This suggests vector fate differs in these species and that strategies focused solely on overcoming preexisting vector-specific antibodies may be insufficient to achieve clinically meaningful expression levels of LSD genes using a liver-directed gene therapy approach in patients.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Combination brain and systemic injections of AAV provide maximal functional and survival benefits in the Niemann-Pick mouse.

Marco A. Passini; Jie Bu; Jonathan A. Fidler; Robin J. Ziegler; Joseph Foley; James Dodge; Wendy Yang; Jennifer Clarke; Tatyana V. Taksir; Denise Griffiths; Michael A. Zhao; Catherine R. O'Riordan; Edward H. Schuchman; Lamya S. Shihabuddin; Seng H. Cheng

Niemann-Pick disease (NPD) is caused by the loss of acid sphingomyelinase (ASM) activity, which results in widespread accumulation of undegraded lipids in cells of the viscera and CNS. In this study, we tested the effect of combination brain and systemic injections of recombinant adeno-associated viral vectors encoding human ASM (hASM) in a mouse model of NPD. Animals treated by combination therapy exhibited high levels of hASM in the viscera and brain, which resulted in near-complete correction of storage throughout the body. This global reversal of pathology translated to normal weight gain and superior recovery of motor and cognitive functions compared to animals treated by either brain or systemic injection alone. Furthermore, animals in the combination group did not generate antibodies to hASM, demonstrating the first application of systemic-mediated tolerization to improve the efficacy of brain injections. All of the animals treated by combination therapy survived in good health to an investigator-selected 54 weeks, whereas the median lifespans of the systemic-alone, brain-alone, or untreated ASM knockout groups were 47, 48, and 34 weeks, respectively. These data demonstrate that combination therapy is a promising therapeutic modality for treating NPD and suggest a potential strategy for treating disease indications that cause both visceral and CNS pathologies.


Molecular Therapy | 2007

Correction of the Biochemical and Functional Deficits in Fabry Mice Following AAV8–mediated Hepatic Expression of α-galactosidase A

Robin J. Ziegler; Maribeth Cherry; Christine M. Barbon; Chester Li; Scott D. Bercury; Donna Armentano; Robert J. Desnick; Seng H. Cheng

The advent of novel adeno-associated virus (AAV) serotype vectors with higher transduction activity has encouraged a re-evaluation of the merits of this delivery platform for a variety of diseases. We report here that administration of a recombinant AAV8-based serotype vector encoding human α-galactosidase A into Fabry mice facilitated more rapid and significantly higher levels of production of the enzyme than an AAV2 vector. This translated into improved clearance of globotriaosylceramide, the glycosphingolipid that accumulates in the lysosomes of affected Fabry cells, and to correction of the peripheral neuropathy shown associated with this disease. The higher levels of α-galactosidase A expression also allowed for a more rapid induction of immunotolerance to the enzyme. Recombinant AAV8 vectors that facilitated hepatic-restricted expression of high levels of α-galactosidase A conferred immunotolerance to the expressed enzyme as early as 30 days post-treatment. Animals expressing lower levels of the hydrolase, such as those treated with an AAV2-based vector or with lower doses of the AAV8-based vector, were also able to develop immunotolerance, but only after a more extended time period. Adoptive transfer of T cells isolated from the spleens of immunotolerized mice suppressed the formation of antibodies in naïve recipient animals, suggesting the possible role of regulatory T cells in effecting this state.


Human Gene Therapy | 2002

Correction of the Nonlinear Dose Response Improves the Viability of Adenoviral Vectors for Gene Therapy of Fabry Disease

Robin J. Ziegler; Chester Li; Maribeth Cherry; Yunxiang Zhu; Donna Hempel; Nico van Rooijen; Yiannis A. Ioannou; Robert J. Desnick; Mark A. Goldberg; Nelson S. Yew; Seng H. Cheng

Systemic administration of recombinant adenoviral vectors for gene therapy of chronic diseases such as Fabry disease can be limited by dose-dependent toxicity. Because administration of a high dose of Ad2/CMVHI-alpha gal encoding human alpha-galactosidase A results in expression of supraphysiological levels of the enzyme, we sought to determine whether lower doses would suffice to correct the enzyme deficiency and lysosomal storage abnormality observed in Fabry mice. Reducing the dose of Ad2/CMVHI-alpha gal by 10-fold (from 10(11) to 10(10) particles/mouse) resulted in a greater than 200-fold loss in transgene expression. In Fabry mice, the reduced expression of alpha-galactosidase A, using the lower dose of Ad2/CMVHI-alpha gal, was associated with less than optimal clearance of the accumulated glycosphingolipid (GL-3) from the affected lysosomes. It was determined that this lack of linearity in dose response was not due to an inability to deliver the recombinant viral vectors to the liver but rather to sequestration, at least in part, of the viral vectors by the Kupffer cells. This lack of correlation between dose and expression levels could be obviated by supplementing the low dose of Ad2/CMVHI-alpha gal with an unrelated adenoviral vector or by depleting the Kupffer cells before administration of Ad2/CMVHI-alpha gal. Prior removal of the Kupffer cells, using clodronate liposomes, facilitated the use of a 100-fold lower dose of Ad2/CMVHI-alpha gal (10(9) particles/mouse) to effect the nearly complete clearance of GL-3 from the affected organs of Fabry mice. These results suggest that practical strategies that minimize the interaction between the recombinant adenoviral vectors and the reticuloendothelial system (RES) may improve the therapeutic window of this vector system. In this regard, we showed that pretreatment of mice with gamma globulins also resulted in significantly enhanced adenovirus-mediated transduction and expression of alpha-galactosidase A in the liver.


Human Gene Therapy | 2008

Ability of Adeno-Associated Virus Serotype 8-Mediated Hepatic Expression of Acid α-Glucosidase to Correct the Biochemical and Motor Function Deficits of Presymptomatic and Symptomatic Pompe Mice

Robin J. Ziegler; Scott D. Bercury; Jonathan A. Fidler; Michael A. Zhao; Joseph Foley; Tatyana V. Taksir; Susan Ryan; Bradley L. Hodges; Ronald K. Scheule; Lamya S. Shihabuddin; Seng H. Cheng

The availability of a murine model of Pompe disease has enabled an evaluation of the relative merits of various therapeutic paradigms, including gene therapy. We report here that administration of a recombinant adeno-associated virus serotype 8 (AAV8) vector (AAV8/DC190-GAA) encoding human acid alpha-glucosidase (GAA) into presymptomatic Pompe mice resulted in nearly complete correction of the lysosomal storage of glycogen in all the affected muscles. A relatively high dose of AAV8/DC190-GAA was necessary to attain a threshold level of GAA for inducing immunotolerance to the expressed enzyme and for correction of muscle function, coordination, and strength. Administration of AAV8/DC190-GAA into older Pompe mice with overt disease manifestations was also effective at correcting the lysosomal storage abnormality. However, these older mice exhibited only marginal improvements in motor function and no improvement in muscle strength. Examination of histologic sections showed evidence of skeletal muscle degeneration and fibrosis in aged Pompe mice whose symptoms were abated or rescued by early but not late treatment with AAV8/DC190-GAA. These results suggest that AAV8-mediated hepatic expression of GAA was effective at addressing the biochemical and functional deficits in Pompe mice. However, early therapeutic intervention is required to maintain significant muscle function and should be an important consideration in the management and treatment of Pompe disease.


Experimental Neurology | 2010

Intracerebroventricular delivery of glucocerebrosidase reduces substrates and increases lifespan in a mouse model of neuronopathic Gaucher disease

Mario A. Cabrera-Salazar; Scott D. Bercury; Robin J. Ziegler; John Marshall; Bradley L. Hodges; Wei-Lien Chuang; Joshua Pacheco; Lingyun Li; Seng H. Cheng; Ronald K. Scheule

Gaucher disease is caused by a deficit in the enzyme glucocerebrosidase. As a consequence, degradation of the glycolipids glucosylceramide (GluCer) and glucosylsphingosine (GluSph) is impaired, and their subsequent buildup can lead to significant pathology and early death. Type 1 Gaucher patients can be treated successfully with intravenous replacement enzyme, but this enzyme does not reach the CNS and thus does not ameliorate the neurological involvement in types 2 and 3 Gaucher disease. As one potential approach to treating these latter patients, we have evaluated intracerebroventricular (ICV) administration of recombinant human glucocerebrosidase (rhGC) in a mouse model of neuronopathic Gaucher disease. ICV administration resulted in enzyme distribution throughout the brain and alleviated neuropathology in multiple brain regions of this mouse model. Treatment also resulted in dose-dependent decreases in GluCer and GluSph and significantly extended survival. To evaluate the potential of continuous enzyme delivery, a group of animals was treated ICV with an adeno-associated viral vector encoding hGC and resulted in a further extension of survival. These data suggest that ICV administration of rhGC may represent a potential therapeutic approach for type 2/3 Gaucher patients. Preclinical evaluation in larger animals will be needed to ascertain the translatability of this approach to the clinic.


Molecular Therapy | 2012

Gene Transfer Corrects Acute GM2 Gangliosidosis—Potential Therapeutic Contribution of Perivascular Enzyme Flow

M. Begoña Cachón-González; Susan Z. Wang; Rosamund McNair; J.M. Bradley; David Lunn; Robin J. Ziegler; Seng H. Cheng; Timothy M. Cox

The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system.The GM2 gangliosidoses are fatal lysosomal storage diseases principally affecting the brain. Absence of β-hexosaminidase A and B activities in the Sandhoff mouse causes neurological dysfunction and recapitulates the acute Tay-Sachs (TSD) and Sandhoff diseases (SD) in infants. Intracranial coinjection of recombinant adeno-associated viral vectors (rAAV), serotype 2/1, expressing human β-hexosaminidase α (HEXA) and β (HEXB) subunits into 1-month-old Sandhoff mice gave unprecedented survival to 2 years and prevented disease throughout the brain and spinal cord. Classical manifestations of disease, including spasticity-as opposed to tremor-ataxia-were resolved by localized gene transfer to the striatum or cerebellum, respectively. Abundant biosynthesis of β-hexosaminidase isozymes and their global distribution via axonal, perivascular, and cerebrospinal fluid (CSF) spaces, as well as diffusion, account for the sustained phenotypic rescue-long-term protein expression by transduced brain parenchyma, choroid plexus epithelium, and dorsal root ganglia neurons supplies the corrective enzyme. Prolonged survival permitted expression of cryptic disease in organs not accessed by intracranial vector delivery. We contend that infusion of rAAV into CSF space and intraparenchymal administration by convection-enhanced delivery at a few strategic sites will optimally treat neurodegeneration in many diseases affecting the nervous system.

Collaboration


Dive into the Robin J. Ziegler's collaboration.

Researchain Logo
Decentralizing Knowledge