Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Robyn Peterson is active.

Publication


Featured researches published by Robyn Peterson.


Microbiology | 2012

Trichoderma reesei RUT-C30 - Thirty years of strain improvement

Robyn Peterson; Helena Nevalainen

The hypersecreting mutant Trichoderma reesei RUT-C30 (ATCC 56765) is one of the most widely used strains of filamentous fungi for the production of cellulolytic enzymes and recombinant proteins, and for academic research. The strain was obtained after three rounds of random mutagenesis of the wild-type QM6a in a screening program focused on high cellulase production and catabolite derepression. Whereas RUT-C30 achieves outstanding levels of protein secretion and high cellulolytic activity in comparison to the wild-type QM6a, recombinant protein production has been less successful. Here, we bring together and discuss the results from biochemical-, microscopic-, genomic-, transcriptomic-, glycomic- and proteomic-based research on the RUT-C30 strain published over the last 30 years.


Nucleic Acids Research | 2014

UniCarbKB: building a knowledge platform for glycoproteomics

Matthew P. Campbell; Robyn Peterson; Julien Mariethoz; Elisabeth Gasteiger; Yukie Akune; Kiyoko F. Aoki-Kinoshita; Frédérique Lisacek; Nicolle H. Packer

The UniCarb KnowledgeBase (UniCarbKB; http://unicarbkb.org) offers public access to a growing, curated database of information on the glycan structures of glycoproteins. UniCarbKB is an international effort that aims to further our understanding of structures, pathways and networks involved in glycosylation and glyco-mediated processes by integrating structural, experimental and functional glycoscience information. This initiative builds upon the success of the glycan structure database GlycoSuiteDB, together with the informatic standards introduced by EUROCarbDB, to provide a high-quality and updated resource to support glycomics and glycoproteomics research. UniCarbKB provides comprehensive information concerning glycan structures, and published glycoprotein information including global and site-specific attachment information. For the first release over 890 references, 3740 glycan structure entries and 400 glycoproteins have been curated. Further, 598 protein glycosylation sites have been annotated with experimentally confirmed glycan structures from the literature. Among these are 35 glycoproteins, 502 structures and 60 publications previously not included in GlycoSuiteDB. This article provides an update on the transformation of GlycoSuiteDB (featured in previous NAR Database issues and hosted by ExPASy since 2009) to UniCarbKB and its integration with UniProtKB and GlycoMod. Here, we introduce a refactored database, supported by substantial new curated data collections and intuitive user-interfaces that improve database searching.


Frontiers in Microbiology | 2014

Making recombinant proteins in filamentous fungi- are we expecting too much?

Helena Nevalainen; Robyn Peterson

Hosts used for the production of recombinant proteins are typically high-protein secreting mutant strains that have been selected for a specific purpose, such as efficient production of cellulose-degrading enzymes. Somewhat surprisingly, sequencing of the genomes of a series of mutant strains of the cellulolytic Trichoderma reesei, widely used as an expression host for recombinant gene products, has shed very little light on the nature of changes that boost high-level protein secretion. While it is generally agreed and shown that protein secretion in filamentous fungi occurs mainly through the hyphal tip, there is growing evidence that secretion of proteins also takes place in sub-apical regions. Attempts to increase correct folding and thereby the yields of heterologous proteins in fungal hosts by co-expression of cellular chaperones and foldases have resulted in variable success; underlying reasons have been explored mainly at the transcriptional level. The observed physiological changes in fungal strains experiencing increasing stress through protein overexpression under strong gene promoters also reflect the challenge the host organisms are experiencing. It is evident, that as with other eukaryotes, fungal endoplasmic reticulum is a highly dynamic structure. Considering the above, there is an emerging body of work exploring the use of weaker expression promoters to avoid undue stress. Filamentous fungi have been hailed as candidates for the production of pharmaceutically relevant proteins for therapeutic use. One of the biggest challenges in terms of fungally produced heterologous gene products is their mode of glycosylation; fungi lack the functionally important terminal sialylation of the glycans that occurs in mammalian cells. Finally, exploration of the metabolic pathways and fluxes together with the development of sophisticated fermentation protocols may result in new strategies to produce recombinant proteins in filamentous fungi.


Mycological Progress | 2011

Extracellular hydrolase profiles of fungi isolated from koala faeces invite biotechnological interest

Robyn Peterson; Jasmine Grinyer; Helena Nevalainen

The extracellular enzymes of seven fungal strains isolated from koala faeces have been comprehensively characterised for the first time, revealing potential for biotechnological applications. The fungal isolates were grown in a hydrolase-inducing liquid medium and the supernatants were analysed using enzyme assays and zymogram gels. Temperature and pH profiles were established for xylanase (EC 3.2.1.8 endo-1,4-β-xylanase), mannanase (EC 3.2.1.78 mannan endo-1,4-β-mannosidase), endoglucanase (EC 3.2.1.4 cellulase), β-glucosidase (EC 3.2.1.21 β-glucosidase), amylase (EC 3.2.1.1 α-amylase), lipase (EC 3.1.1.3 triacylglycerol lipase) and protease (EC 3.4 peptidase) activities. Comparisons were made to the high-secreting hypercellulolytic mutant strain Trichoderma reesei RUT-C30 and the wild-type T. reesei QM6a. The isolates from koala faeces Gelasinospora cratophora A10 and Trichoderma atroviride A2 were good secretors of total protein and heat-tolerant enzymes. Doratomyces stemonitis C8 secreted hemicellulase(s), endoglucanase(s) and β-glucosidase(s) with neutral to alkaline pH optimums. A cold-tolerant lipase was secreted by Mariannaea camptospora A11. The characteristics displayed by the enzymes are highly sought after for industrial processes such as the manufacture of paper, detergents and food products. Furthermore, the enzymes were produced at good starting levels that could be increased further by strain improvement programs.


Letters in Applied Microbiology | 2009

Fungi from koala (Phascolarctos cinereus) faeces exhibit a broad range of enzyme activities against recalcitrant substrates

Robyn Peterson; John Ronald Bradner; Thomas H. Roberts; K.M.H. Nevalainen

Aims:  Identification of fungi isolated from koala faeces and screening for their enzyme activities of biotechnological interest.


Applied and Environmental Microbiology | 2011

Secretome of the Coprophilous Fungus Doratomyces stemonitis C8, Isolated from Koala Feces.

Robyn Peterson; Jasmine Grinyer; Helena Nevalainen

ABSTRACT Coprophilous fungi inhabit herbivore feces, secreting enzymes to degrade the most recalcitrant parts of plant biomass that have resisted the digestive process. Consequently, the secretomes of coprophilous fungi have high potential to contain novel and efficient plant cell wall degrading enzymes of biotechnological interest. We have used one-dimensional and two-dimensional gel electrophoresis, matrix-assisted laser desorption ionization–time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS/MS), and quadrupole time-of-flight liquid chromatography–tandem mass spectrometry (Q-TOF LC-MS/MS) to identify proteins from the secretome of the coprophilous fungus Doratomyces stemonitis C8 (EU551185) isolated from koala feces. As the genome of D. stemonitis has not been sequenced, cross-species identification, de novo sequencing, and zymography formed an integral part of the analysis. A broad range of enzymes involved in the degradation of cellulose, hemicellulose, pectin, lignin, and protein were revealed, dominated by cellobiohydrolase of the glycosyl hydrolase family 7 and endo-1,4-β-xylanase of the glycosyl hydrolase family 10. A high degree of specialization for pectin degradation in the D. stemonitis C8 secretome distinguishes it from the secretomes of some other saprophytic fungi, such as the industrially exploited T. reesei. In the first proteomic analysis of the secretome of a coprophilous fungus reported to date, the identified enzymes provide valuable insight into how coprophilous fungi subsist on herbivore feces, and these findings hold potential for increasing the efficiency of plant biomass degradation in industrial processes such as biofuel production in the future.


Journal of Microbiological Methods | 2009

Fungal proteins with mannanase activity identified directly from a Congo Red stained zymogram by mass spectrometry

Robyn Peterson; Jasmine Grinyer; Janice Joss; Alamgir Khan; Helena Nevalainen

Secreted fungal proteins with mannanase activity were identified by mass spectrometry of bands excised from a Congo Red stained zymogram containing locust bean gum as substrate. This technique circumvents the need to locate corresponding bands on a parallel gel without substrate and provides good accuracy in targeting proteins for identification.


Biotechnology and Biology of Trichoderma | 2014

Heterologous Expression of Proteins in Trichoderma

Helena Nevalainen; Robyn Peterson

Abstract The main constituents for expressing heterologous gene products in Trichoderma reesei are the strong inducible cellobiohydrolase 1 ( cbh1 ) promoter, high protein-secreting mutant strains and the heterologous protein typically fused to an endogenous well-secreted carrier protein. Despite of several variations to the tools of the trade, surprisingly little progress has been made over the last 20 years in terms of the yields of heterologous gene products produced in fungi. While recent approaches, including genome sequencing and transcriptional and proteomic studies, have provided some leads for further development, there seems to be additional physiological factors that would need to be addressed in order to better understand and overcome the bottlenecks of production of heterologous proteins in T. reesei . Here we discuss the various approaches and recent advancements into protein expression in this industrially exploited production host.


New Biotechnology | 2016

Expression of the mammalian peptide hormone obestatin in Trichoderma reesei.

Angela Sun; Robyn Peterson; Junior Te'o; Helena Nevalainen

The filamentous fungus Trichoderma reesei is an expression host widely exploited for the production of recombinant proteins. However, its capacity for expressing small peptides (<20 kDa) has remained largely uncharted to date. In this work, we have produced the hormone peptide obestatin fused to the hydrophobin I tag (Obe-HFBI), using the T. reesei cellobiohydrolase I core (CBHI) or xylanase 2 (XYN2) pro-region as a carrier and the cbh1 promoter for gene expression, in high protein-low protease producing mutant strains T. reesei Rut-C30 and HEPI. The yield of obestatin was improved from about 300 ng/ml to up to 5.5 μg/ml through adaptive laboratory evolution and modifications to the cultivation strategy, which included adjustments of the type and ratio of carbon and nitrogen sources used in the medium. The successful expression of Obe-HFBI demonstrated the potential of T. reesei as an expression host for small peptides and further enhancement of the recombinant yield through modification of culture conditions.


Archive | 2017

Navigating the glycome space and connecting the glycoproteome

Matthew Campbell; Robyn Peterson; Elisabeth Gasteiger; Julien Mariethoz; Frédérique Lisacek; Nicolle H. Packer

UniCarbKB ( http://unicarbkb.org ) is a comprehensive resource for mammalian glycoprotein and annotation data. In particular, the database provides information on the oligosaccharides characterized from a glycoprotein at either the global or site-specific level. This evidence is accumulated from a peer-reviewed and manually curated collection of information on oligosaccharides derived from membrane and secreted glycoproteins purified from biological fluids and/or tissues. This information is further supplemented with experimental method descriptions that summarize important sample preparation and analytical strategies. A new release of UniCarbKB is published every three months, each includes a collection of curated data and improvements to database functionality. In this Chapter, we outline the objectives of UniCarbKB, and describe a selection of step-by-step workflows for navigating the information available. We also provide a short description of web services available and future plans for improving data access. The information presented in this Chapter supplements content available in our knowledgebase including regular updates on interface improvements, new features, and revisions to the database content ( http://confluence.unicarbkb.org ).

Collaboration


Dive into the Robyn Peterson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frédérique Lisacek

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Elisabeth Gasteiger

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar

Julien Mariethoz

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge