Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rochelle R. Arvizo is active.

Publication


Featured researches published by Rochelle R. Arvizo.


Chemical Society Reviews | 2012

Intrinsic therapeutic applications of noble metal nanoparticles: Past, present and future

Rochelle R. Arvizo; Sanjib Bhattacharyya; Rachel A. Kudgus; Karuna Giri; Resham Bhattacharya; Priyabrata Mukherjee

Biomedical nanotechnology is an evolving field having enormous potential to positively impact the health care system. Important biomedical applications of nanotechnology that may have potential clinical applications include targeted drug delivery, detection/diagnosis and imaging. Basic understanding of how nanomaterials, the building blocks of nanotechnology, interact with the cells and their biological consequences are beginning to evolve. Noble metal nanoparticles such as gold, silver and platinum are particularly interesting due to their size and shape dependent unique optoelectronic properties. These noble metal nanoparticles, particularly of gold, have elicited a lot of interest for important biomedical applications because of their ease of synthesis, characterization and surface functionalization. Furthermore, recent investigations are demonstrating another promising application of these nanomaterials as self-therapeutics. To realize the potential promise of these unique inorganic nanomaterials for future clinical translation, it is of utmost importance to understand a few critical parameters; (i) how these nanomaterials interact with the cells at the molecular level; (ii) how their biodistribution and pharmacokinetics influenced by their surface and routes of administration; (iii) mechanism of their detoxification and clearance and (iv) their therapeutic efficacy in appropriate disease model. Thus in this critical review, we will discuss the various clinical applications of gold, silver and platinum nanoparticles with relevance to above parameters. We will also mention various routes of synthesis of these noble metal nanoparticles. However, before we discuss present research, we will also look into the past. We need to understand the discoveries made before us in order to further our knowledge and technological development (318 references).


Nano Letters | 2010

Effect of Nanoparticle Surface Charge at the Plasma Membrane and Beyond

Rochelle R. Arvizo; Oscar R. Miranda; Michael A. Thompson; Christina M. Pabelick; Resham Bhattacharya; J. David Robertson; Vincent M. Rotello; Y. S. Prakash; Priyabrata Mukherjee

Herein, we demonstrate that the surface charge of gold nanoparticles (AuNPs) plays a critical role in modulating membrane potential of different malignant and nonmalignant cell types and subsequent downstream intracellular events. The findings presented here describe a novel mechanism for cell-nanoparticle interactions and AuNP uptake: modulation of membrane potential and its effect on intracellular events. These studies will help understand the biology of cell-nanoparticle interactions and facilitate the engineering of nanoparticles for specific intracellular targets.


Nature Chemistry | 2009

Sensing of proteins in human serum using conjugates of nanoparticles and green fluorescent protein

Mrinmoy De; Subinoy Rana; Handan Akpinar; Oscar R. Miranda; Rochelle R. Arvizo; Uwe H. F. Bunz; Vincent M. Rotello

There is a direct correlation between protein levels and disease states in human serum making it an attractive target for sensors and diagnostics. However this is made challenging because serum features more than 20,000 proteins with an overall protein content of greater than 1 mM. Here we report a hybrid synthetic-biomolecule based sensor that uses green fluorescent protein-nanoparticle arrays to detect proteins at biorelevant concentrations in both buffer and human serum. Distinct and reproducible fluorescence response patterns were obtained from five serum proteins (human serum albumin, immunoglobulin G, transferrin, fibrinogen and α-antitrypsin) in buffer and when spiked into human serum. Using linear discriminant analysis we identified these proteins with an identification accuracy of 100% in buffer and 97% in human serum. The arrays were also able to discriminate between different concentrations of the same protein as well as a mixture of different proteins in human serum.There is a direct correlation between protein levels and disease states in human serum, which makes it an attractive target for sensors and diagnostics. However, this is challenging because serum features more than 20,000 proteins, with an overall protein content greater than 1 mM. Here we report a sensor based on a hybrid synthetic-biomolecule that uses arrays of green fluorescent protein and nanoparticles to detect proteins at biorelevant concentrations in both buffer and human serum. Distinct and reproducible fluorescence-response patterns were obtained from five serum proteins (human serum albumin, immunoglobulin G, transferrin, fibrinogen and a-antitrypsin), both in buffer and when spiked into human serum. Using linear discriminant analysis we identified these proteins with an identification accuracy of 100% in buffer and 97% in human serum. The arrays were also able to discriminate between different concentrations of the same protein, as well as a mixture of different proteins in human serum.


Expert Opinion on Drug Delivery | 2010

Gold nanoparticles: opportunities and challenges in nanomedicine

Rochelle R. Arvizo; Resham Bhattacharya; Priyabrata Mukherjee

Importance of the field: Site-specific drug delivery is an important area of research that is anticipated to increase the efficacy of the drug and reduce potential side effects. Owing to this, substantial work has been done developing non-invasive and targeted tumor treatment with nanoscale metallic particles. Areas covered in this review: This review focuses on the work done in the last few years developing gold nanoparticles as cancer therapeutics and diagnostic agents. However, there are challenges in using gold nanoparticles as drug delivery systems, such as biodistribution, pharmacokinetics and possible toxicity. Approaches to limit these issues are proposed. What the reader will gain: Different approaches from several different disciplines are discussed. Potential clinical applications of these engineered nanoparticles are also presented. Take home message: As a result of their unique size-dependent physicochemical and optical properties, adaptability, subcellular size and biocompatibility, these nanosized carriers offer a suitable means of transporting small molecules as well as biomacromolecules to diseased cells/tissues.


PLOS ONE | 2011

Modulating Pharmacokinetics, Tumor Uptake and Biodistribution by Engineered Nanoparticles

Rochelle R. Arvizo; Oscar R. Miranda; Daniel F. Moyano; Chad A. Walden; Karuna Giri; Resham Bhattacharya; J. David Robertson; Vincent M. Rotello; Joel M. Reid; Priyabrata Mukherjee

Background Inorganic nanoparticles provide promising tools for biomedical applications including detection, diagnosis and therapy. While surface properties such as charge are expected to play an important role in their in vivo behavior, very little is known how the surface chemistry of nanoparticles influences their pharmacokinetics, tumor uptake, and biodistribution. Method/Principal Findings Using a family of structurally homologous nanoparticles we have investigated how pharmacological properties including tumor uptake and biodistribution are influenced by surface charge using neutral (TEGOH), zwitterionic (Tzwit), negative (TCOOH) and positive (TTMA) nanoparticles. Nanoparticles were injected into mice (normal and athymic) either in the tail vein or into the peritoneum. Conclusion Neutral and zwitterionic nanoparticles demonstrated longer circulation time via both IP and IV administration, whereas negatively and positively charged nanoparticles possessed relatively short half-lives. These pharmacological characteristics were reflected on the tumor uptake and biodistribution of the respective nanoparticles, with enhanced tumor uptake by neutral and zwitterionic nanoparticles via passive targeting.


Journal of the American Chemical Society | 2010

Intracellular Delivery of a Membrane-Impermeable Enzyme in Active Form using Functionalized Gold Nanoparticles

Partha Ghosh; Xiaochao Yang; Rochelle R. Arvizo; Zheng-Jiang Zhu; Sarit S. Agasti; Zhi‐Hong Mo; Vincent M. Rotello

Gold nanoparticles were coated with a short peptide to promote intracellular delivery of membrane-impermeable proteins. Through microscopy and enzyme assays, we demonstrated the particles were able to transport functional enzymes into a variety of cell lines. Significantly, the transported proteins were able to escape from endosomes. Moreover, these particles showed no apparent cytotoxicity.


Nanomedicine: Nanotechnology, Biology and Medicine | 2011

Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge.

Rochelle R. Arvizo; Subinoy Rana; Oscar R. Miranda; Resham Bhattacharya; Vincent M. Rotello; Priyabrata Mukherjee

Discovering therapeutic inorganic nanoparticles (NPs) is evolving as an important area of research in the emerging field of nanomedicine. Recently, we reported the anti-angiogenic property of gold nanoparticles (GNPs): It inhibits the function of pro-angiogenic heparin-binding growth factors (HB-GFs), such as vascular endothelial growth factor 165 (VEGF165) and basic fibroblast growth factor (bFGF), etc. However, the mechanism through which GNPs imparts such an effect remains to be investigated. Using GNPs of different sizes and surface charges, we demonstrate here that a naked GNP surface is required and core size plays an important role to inhibit the function of HB-GFs and subsequent intracellular signaling events. We also demonstrate that the inhibitory effect of GNPs is due to the change in HB-GFs conformation/configuration (denaturation) by the NPs, whereas the conformations of non-HB-GFs remain unaffected. We believe that this significant study will help structure-based design of therapeutic NPs to inhibit the functions of disease-causing proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle

Rochelle R. Arvizo; Sounik Saha; Enfeng Wang; J. David Robertson; Resham Bhattacharya; Priyabrata Mukherjee

Although biomedical applications of nanotechnology, which typically involve functionalized nanoparticles, have taken significant strides, biological characterization of unmodified nanoparticles remains underinvestigated. Herein we demonstrate that unmodified gold nanoparticles (AuNPs) inhibit the proliferation of cancer cells in a size- and concentration-dependent manner by abrogating MAPK-signaling. In addition, these AuNPs reverse epithelial-mesenchymal transition (EMT) in cancer cells by reducing secretion of a number of proteins involved in EMT, up-regulating E-Cadherin, and down-regulating Snail, N-Cadherin, and Vimentin. Inhibition of MAPK signaling and reversal of EMT upon AuNP treatment inhibits tumor growth and metastasis in two separate orthotopic models of ovarian cancer. Western blot analyses of tumor tissues reveal up-regulation of E-Cadherin and down-regulation of Snail and phospho-MAPK, confirming the reversal of EMT and inhibition of MAPK signaling upon AuNP treatment. The ability of a single self-therapeutic nanoparticle to abrogate signaling cascades of multiple growth factors is distinctive and purports possible medical applications as potential antitumor and antimetastatic agent.


PLOS ONE | 2012

Identifying New Therapeutic Targets via Modulation of Protein Corona Formation by Engineered Nanoparticles

Rochelle R. Arvizo; Karuna Giri; Daniel F. Moyano; Oscar R. Miranda; Benjamin J. Madden; Daniel J. McCormick; Resham Bhattacharya; Vincent M. Rotello; Jean Pierre A Kocher; Priyabrata Mukherjee

Background We introduce a promising methodology to identify new therapeutic targets in cancer. Proteins bind to nanoparticles to form a protein corona. We modulate this corona by using surface-engineered nanoparticles, and identify protein composition to provide insight into disease development. Methods/Principal Findings Using a family of structurally homologous nanoparticles we have investigated the changes in the protein corona around surface-functionalized gold nanoparticles (AuNPs) from normal and malignant ovarian cell lysates. Proteomics analysis using mass spectrometry identified hepatoma-derived growth factor (HDGF) that is found exclusively on positively charged AuNPs (+AuNPs) after incubation with the lysates. We confirmed expression of HDGF in various ovarian cancer cells and validated binding selectivity to +AuNPs by Western blot analysis. Silencing of HDGF by siRNA resulted s inhibition in proliferation of ovarian cancer cells. Conclusion We investigated the modulation of protein corona around surface-functionalized gold nanoparticles as a promising approach to identify new therapeutic targets. The potential of our method for identifying therapeutic targets was demonstrated through silencing of HDGF by siRNA, which inhibited proliferation of ovarian cancer cells. This integrated proteomics, bioinformatics, and nanotechnology strategy demonstrates that protein corona identification can be used to discover novel therapeutic targets in cancer.


Chemical Communications | 2006

In situ observation of place exchange reactions of gold nanoparticles. Correlation of monolayer structure and stability

Rui Hong; Joseph M. Fernández; Hiroshi Nakade; Rochelle R. Arvizo; Todd Emrick; Vincent M. Rotello

Place exchange reactions were studied using dye displacement: subtle changes in ligand structure greatly affected both the rate of displacement and the stability of the monolayer.

Collaboration


Dive into the Rochelle R. Arvizo's collaboration.

Top Co-Authors

Avatar

Vincent M. Rotello

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Resham Bhattacharya

University of Oklahoma Health Sciences Center

View shared research outputs
Top Co-Authors

Avatar

Priyabrata Mukherjee

Indian Institute of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Oscar R. Miranda

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge