Rod Bremner
University of Toronto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rod Bremner.
PLOS ONE | 2009
M. Dominik Fischer; Gesine Huber; Susanne C. Beck; Naoyuki Tanimoto; Regine Muehlfriedel; Edda Fahl; Christian Grimm; Andreas Wenzel; Charlotte E. Remé; Serge A. van de Pavert; Jan Wijnholds; Marek Pacal; Rod Bremner; Mathias W. Seeliger
Background Optical coherence tomography (OCT) is a novel method of retinal in vivo imaging. In this study, we assessed the potential of OCT to yield histology-analogue sections in mouse models of retinal degeneration. Methodology/Principal Findings We achieved to adapt a commercial 3rd generation OCT system to obtain and quantify high-resolution morphological sections of the mouse retina which so far required in vitro histology. OCT and histology were compared in models with developmental defects, light damage, and inherited retinal degenerations. In conditional knockout mice deficient in retinal retinoblastoma protein Rb, the gradient of Cre expression from center to periphery, leading to a gradual reduction of retinal thickness, was clearly visible and well topographically quantifiable. In Nrl knockout mice, the layer involvement in the formation of rosette-like structures was similarly clear as in histology. OCT examination of focal light damage, well demarcated by the autofluorescence pattern, revealed a practically complete loss of photoreceptors with preservation of inner retinal layers, but also more subtle changes like edema formation. In Crb1 knockout mice (a model for Lebers congenital amaurosis), retinal vessels slipping through the outer nuclear layer towards the retinal pigment epithelium (RPE) due to the lack of adhesion in the subapical region of the photoreceptor inner segments could be well identified. Conclusions/Significance We found that with the OCT we were able to detect and analyze a wide range of mouse retinal pathology, and the results compared well to histological sections. In addition, the technique allows to follow individual animals over time, thereby reducing the numbers of study animals needed, and to assess dynamic processes like edema formation. The results clearly indicate that OCT has the potential to revolutionize the future design of respective short- and long-term studies, as well as the preclinical assessment of therapeutic strategies.
Molecular and Cellular Biology | 1995
Rod Bremner; B L Cohen; M Sopta; P A Hamel; C J Ingles; Brenda L. Gallie; Robert A. Phillips
It was recently shown that the E2F-pRB complex is a negative transcriptional regulator. However, it was not determined whether the whole complex or pRB alone is required for repression. Here we show that pRB and the related protein p107 are capable of direct transcriptional repression independent of E2F. When fused to the DNA binding domain of GAL4, pRB or p107 represses transcription of promoters with GAL4 binding sites. Thus, E2F acts as a tether for pRB or p107 but is not actively involved in repression of other enhancers. This function of pRB maps to the pocket and is abrogated by mutation of this domain. This result suggests an intriguing model in which the pocket has a dual function, first to bind E2F and second to repress transcription directly, possibly through interaction with other proteins. We also show that direct transcriptional repression by pRB is regulated by phosphorylation. Mutations which render pRB constitutively hypophosphorylated potentiate repression, while phosphorylation induced by cyclin A or E reduces repression ninefold.
Nature | 2009
Jean Leon Chong; Pamela L. Wenzel; M. Teresa Sáenz-Robles; Vivek Nair; Antoney Ferrey; John P. Hagan; Yorman M. Gomez; Nidhi Sharma; Hui-Zi Chen; Madhu M. Ouseph; Shu Huei Wang; Prashant Trikha; Brian Culp; Louise Mezache; Douglas J. Winton; Owen J. Sansom; Danian Chen; Rod Bremner; Paul G. Cantalupo; Michael L. Robinson; James M. Pipas; Gustavo Leone
In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1–3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival. In differentiating cells E2f1–3 function in a complex with Rb as repressors to silence E2f targets and facilitate exit from the cell cycle. The inactivation of Rb in differentiating cells resulted in a switch of E2f1–3 from repressors to activators, leading to the superactivation of E2f responsive targets and ectopic cell divisions. Loss of E2f1–3 completely suppressed these phenotypes caused by Rb deficiency. This work contextualizes the activator versus repressor functions of E2f1–3 in vivo, revealing distinct roles in dividing versus differentiating cells and in normal versus cancer-like cell cycles.
Nature | 2009
Danian Chen; Marek Pacal; Pamela L. Wenzel; Paul S. Knoepfler; Gustavo Leone; Rod Bremner
The activating E2f transcription factors (E2f1, E2f2 and E2f3) induce transcription and are widely viewed as essential positive cell cycle regulators. Indeed, they drive cells out of quiescence, and the ‘cancer cell cycle’ in Rb1 null cells is E2f-dependent. Absence of activating E2fs in flies or mammalian fibroblasts causes cell cycle arrest, but this block is alleviated by removing repressive E2f or the tumour suppressor p53, respectively. Thus, whether activating E2fs are indispensable for normal division is an area of debate. Activating E2fs are also well known pro-apoptotic factors, providing a defence against oncogenesis, yet E2f1 can limit irradiation-induced apoptosis. In flies this occurs through repression of hid (also called Wrinkled; Smac/Diablo in mammals). However, in mammals the mechanism is unclear because Smac/Diablo is induced, not repressed, by E2f1, and in keratinocytes survival is promoted indirectly through induction of DNA repair targets. Thus, a direct pro-survival function for E2f1–3 and/or its relevance beyond irradiation has not been established. To address E2f1–3 function in normal cells in vivo we focused on the mouse retina, which is a relatively simple central nervous system component that can be manipulated genetically without compromising viability and has provided considerable insight into development and cancer. Here we show that unlike fibroblasts, E2f1–3 null retinal progenitor cells or activated Müller glia can divide. We attribute this effect to functional interchangeability with Mycn. However, loss of activating E2fs caused downregulation of the p53 deacetylase Sirt1, p53 hyperacetylation and elevated apoptosis, establishing a novel E2f–Sirt1–p53 survival axis in vivo. Thus, activating E2fs are not universally required for normal mammalian cell division, but have an unexpected pro-survival role in development.
The EMBO Journal | 2002
Samantha G. Pattenden; Robert Klose; Elizabeth Karaskov; Rod Bremner
SWI/SNF regulates growth control, differentiation and tumor suppression, yet few direct targets of this chromatin‐remodeling complex have been identified in mammalian cells. We report that SWI/SNF is required for interferon (IFN)‐γ induction of CIITA, the master regulator of major histocompatibility complex class II expression. Despite the presence of functional STAT1, IRF‐1 and USF‐1, activators implicated in CIITA expression, IFN‐γ did not induce CIITA in cells lacking BRG1 and hBRM, the ATPase subunits of SWI/SNF. Reconstitution with BRG1, but not an ATPase‐deficient version of this protein (K798R), rescued CIITA induction, and enhanced the rate of induction of the IFN‐γ‐responsive GBP‐1 gene. Not ably, BRG1 inhibited the CIITA promoter in transient transfection assays, underscoring the importance of an appropriate chromosomal environment. Chroma tin immunoprecipitation revealed that BRG1 interacts directly with the endogenous CIITA promoter in an IFN‐γ‐inducible fashion, while in vivo DNase I footprinting and restriction enzyme accessibility assays showed that chromatin remodeling at this locus requires functional BRG1. These data provide the first link between a cytokine pathway and SWI/SNF, and suggest a novel role for this chromatin‐remodeling complex in immune surveillance.
Journal of Biological Chemistry | 1998
David P. DiCiommo; Rod Bremner
Semliki Forest virus (SFV) vectors can be produced faster, and have a wider host range, than baculovirus vectors. However, the original SFV system requires in vitromanipulation of RNA. We have generated a system that is wholly DNA-based. Both the replicon vector, encoding SFV polymerase and the protein of interest, and the helper vector, encoding viral structural proteins, were modified so that expression was RNA polymerase II-dependent. Transfection of the modified replicon plasmid alone generated 20–30-fold more protein than obtained from a simple expression vector. Expression required the SFV replicase, which amplifies replicon RNA. The SFV-based vector generated 10–20-fold more protein than a plasmid based on Sindbis virus. Cotransfection of SFV replicon and helper vectors generated viral titers of around 106 infectious particles/ml. A single electroporation, plated on one 10-cm plate, generated enough virus (107particles) to produce >500 μg of protein. Wild type, replication proficient virus was not detected in three tests utilizing almost 108 viral particles, a distinct advantage over a DNA Sindbis-based system in which over half the virus particles generated are fully infectious. The new SFV vectors significantly enhance the utility of this expression system.
Molecular and Cellular Biology | 1993
Eldad Zacksenhaus; Rod Bremner; Robert A. Phillips; Brenda L. Gallie
The retinoblastoma gene product, p110RB1, appears to regulate cell growth by modulating the activities of nuclear transcription factors. The elements that specify the transport of p110RB1 into the nucleus have not yet been explored. We now report the identification of a basic region, KRSAEGGNPPKPLKKLR, in the C terminus of p110RB1, which has sequence similarity to known bipartite nuclear localization signals (NLSs). A two-amino-acid mutation introduced into this putative NLS [to give mutant NLS(NQ)] or deletion of the entire NLS (delta NLS) abrogated exclusive nuclear localization, yielding proteins which were distributed either equally throughout the cell or predominantly in the cytoplasm. A mutant protein [NLS(NQ)/delta 22] containing both the mutated NLS and a deletion of exon 22, previously shown to disrupt the interaction of p110RB1 with several cellular transcription factors and oncoproteins, accumulated only in the cytoplasm. When fused to the C terminus of Escherichia coli beta-galactosidase, the RB1 NLS directed this protein to the nucleus, indicating that the motif is not only necessary but also sufficient for nuclear transport. Neither NLS(NQ) nor delta NLS was hyperphosphorylated in vivo, but both retained their abilities to interact, in vitro, with simian virus 40 large T antigen, adenovirus E1a, and the cellular transcription factor E2F. When transfected at multiple copy number, the NLS mutant alleles displayed reduced biological activity, measured by inhibition of growth of the osteogenic sarcoma cell line Saos-2, which has no wild-type RB1. Naturally occurring mutations and deletions in exon 25 of RB1 which disrupt the NLS may lead to partial or complete inactivation of p110RB1 and may be responsible for some retinoblastoma and other tumors.
Nucleic Acids Research | 2005
Lawrence E. Heisler; Dax Torti; Paul C. Boutros; John D. Watson; Charles K. Chan; Neil Winegarden; Mark Takahashi; Patrick Yau; Tim H M Huang; Peggy J. Farnham; Igor Jurisica; James R. Woodgett; Rod Bremner; Linda Z. Penn; Sandy D. Der
An effective tool for the global analysis of both DNA methylation status and protein–chromatin interactions is a microarray constructed with sequences containing regulatory elements. One type of array suited for this purpose takes advantage of the strong association between CpG Islands (CGIs) and gene regulatory regions. We have obtained 20 736 clones from a CGI Library and used these to construct CGI arrays. The utility of this library requires proper annotation and assessment of the clones, including CpG content, genomic origin and proximity to neighboring genes. Alignment of clone sequences to the human genome (UCSC hg17) identified 9595 distinct genomic loci; 64% were defined by a single clone while the remaining 36% were represented by multiple, redundant clones. Approximately 68% of the loci were located near a transcription start site. The distribution of these loci covered all 23 chromosomes, with 63% overlapping a bioinformatically identified CGI. The high representation of genomic CGI in this rich collection of clones supports the utilization of microarrays produced with this library for the study of global epigenetic mechanisms and protein–chromatin interactions. A browsable database is available on-line to facilitate exploration of the CGIs in this library and their association with annotated genes or promoter elements.
Journal of Neurochemistry | 2009
Hiroki Fujieda; Rod Bremner; Alan J. Mears; Hiroshi Sasaki
Color vision is supported by retinal cone photoreceptors that, in most mammals, express two photopigments sensitive to short (S‐opsin) or middle (M‐opsin) wavelengths. Expression of the Opn1sw and Opn1mw genes, encoding S‐opsin and M‐opsin, respectively, is under the control of nuclear receptors, including thyroid hormone receptor β2 (TRβ2), retinoid X receptor γ (RXRγ), and RORβ, a member of the retinoic acid receptor‐related orphan receptor (ROR) family. We now demonstrate that RORα, another member of the ROR family, regulates Opn1sw, Opn1mw, as well as Arr3 (cone arrestin) in the mouse retina. RORα expression is detected in cones by postnatal day 3 and maintained through adulthood. The retinas of staggerer mice, carrying a null mutation of RORα, show significant down‐regulation of Opn1sw, Opn1mw, and Arr3. RORα acts in synergy with cone‐rod homeobox transcription factor (Crx), to activate the Opn1sw promoter in vitro. Chromatin immunoprecipitation assays reveal that RORα directly binds to the Opn1sw promoter, Opn1mw locus control region, and the Arr3 promoter in vivo. Our data suggest that RORα plays a crucial role in cone development by directly regulating multiple cone genes.
Molecular and Cellular Biology | 2007
Kelly A. McClellan; Vladimir A. Ruzhynsky; David N. Douda; Jacqueline L. Vanderluit; Kerry L. Ferguson; Danian Chen; Rod Bremner; David S. Park; Gustavo Leone; Ruth S. Slack
ABSTRACT The cell cycle regulatory retinoblastoma (Rb) protein is a key regulator of neural precursor proliferation; however, its role has been expanded to include a novel cell-autonomous role in mediating neuronal migration. We sought to determine the Rb-interacting factors that mediate both the cell cycle and migration defects. E2F1 and E2F3 are likely Rb-interacting candidates that we have shown to be deregulated in the absence of Rb. Using mice with compound null mutations of Rb and E2F1 or E2F3, we asked to what extent either E2F1 or E2F3 interacts with Rb in neurogenesis. Here, we report that E2F1 and E2F3 are both functionally relevant targets in neural precursor proliferation, cell cycle exit, and laminar patterning. Each also partially mediates the Rb requirement for neuronal survival. Neuronal migration, however, is specifically mediated through E2F3, beyond its role in cell cycle regulation. This study not only outlines overlapping and distinct functions for E2Fs in neurogenesis but also is the first to establish a physiologically relevant role for the Rb/E2F pathway beyond cell cycle regulation in vivo.