Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eldad Zacksenhaus is active.

Publication


Featured researches published by Eldad Zacksenhaus.


Oncogene | 1997

The retinoblastoma gene family is differentially expressed during embryogenesis.

Zhe Jiang; Eldad Zacksenhaus; Brenda L. Gallie; Robert A. Phillips

We report differential expression of the RB1 tumor suppressor gene and the homologous genes p107 and p130 during embryogenesis. Abundant RB1 transcripts were detected during neurogenesis, hematopoiesis, myogenesis, lens development and in the ganglion cell layer of the embryonic retina, prior to and during differentiation. The expression pattern of RB1 mirrored the defects in RB1 mutant mice (RB−/−). In the heart, lung, kidney and intestine, p107, but not RB1, was expressed. In the liver and the central nervous system p107 and RB1 were co-expressed, consistent with the accelerated cell death observed in RB−/−; p107−/− double knock-out mice. In the central nervous system, p107 expression was restricted to proliferating cells surrounding the ventricles, while RB1 was expressed in areas of both proliferating and differentiating cells. In contrast to RB1 and p107, expression of p130 was low throughout embryogenesis. In situ hybridization and Western blot analyses showed that the expression of p107 and p130 was not markedly altered in RB−/− embryos compared to control littermates. Our results suggest that members of RB1 gene family have distinct, but overlapping roles in embryogenesis, with p107 and RB1 possibly having redundant functions in the central nervous system and liver.


Cancer Research | 2007

Identification of tumorsphere- and tumor-initiating cells in HER2/Neu-induced mammary tumors.

Jeff C. Liu; Tao Deng; Rajwinder S. Lehal; Jinny Kim; Eldad Zacksenhaus

A variety of human malignancies, including breast cancer, are thought to be organized in a hierarchy, whereby a relatively minor population of tumor initiating cells (TIC) is responsible for tumor growth and the vast majority of remaining cells is nontumorigenic. Analysis of TICs in model systems of breast cancer would offer uniform and accessible source of tumor cells and the power of mouse genetics to dissect these rare cells. The HER2/Neu proto-oncogene is overexpressed in an aggressive form of human breast cancer. Mouse mammary tumor virus (MMTV)-Neu transgenic mice develop mammary tumors that mimic human HER2 subtype breast cancer. Here, we report on the functional identification of mouse HER2/Neu TICs that can induce tumors after transplantation into the mammary gland of recipient mice. Secondary tumors formed after injecting MMTV-Neu TICs resemble primary tumors in the original transgenic mice and are organized in a hierarchy containing TICs as well as their nontumorigenic descendants. To study MMTV-Neu TICs in vitro, we grew tumorspheres under nonadherent culture conditions. Tumorsphere forming units (TFU) capable of producing tumorspheres retained tumorigenic potential and were indistinguishable by several criteria from TICs. Interestingly, MMTV-Neu TICs and TFUs were committed to the luminal cell fate when induced to differentiate in vitro. Our data define reproducible characteristics of the MMTV-Neu TIC and TFU, which help to explain marker expression profiles of HER2-positive breast cancer. In addition, the similarity between TICs and TFUs in this system provides a rationale for TFU-based screens to target tumor-initiating cells in HER2(+) breast cancer.


Lancet Oncology | 2013

Characterisation of retinoblastomas without RB1 mutations: genomic, gene expression, and clinical studies.

Diane Rushlow; Berber M. Mol; Jennifer Y. Kennett; Stephanie Yee; Sanja Pajovic; Brigitte L. Thériault; Nadia L Prigoda-Lee; Clarellen Spencer; Helen Dimaras; Timothy W. Corson; Renee Pang; Christine Massey; Roseline Godbout; Zhe Jiang; Eldad Zacksenhaus; Katherine Paton; Annette C. Moll; Claude Houdayer; Anthony Raizis; William Halliday; Wan L. Lam; Paul C. Boutros; Dietmar R. Lohmann; Josephine C. Dorsman; Brenda L. Gallie

BACKGROUND Retinoblastoma is the childhood retinal cancer that defined tumour-suppressor genes. Previous work shows that mutation of both alleles of the RB1 retinoblastoma suppressor gene initiates disease. We aimed to characterise non-familial retinoblastoma tumours with no detectable RB1 mutations. METHODS Of 1068 unilateral non-familial retinoblastoma tumours, we compared those with no evidence of RB1 mutations (RB1(+/+)) with tumours carrying a mutation in both alleles (RB1(-/-)). We analysed genomic copy number, RB1 gene expression and protein function, retinal gene expression, histological features, and clinical data. FINDINGS No RB1 mutations (RB1(+/+)) were reported in 29 (2·7%) of 1068 unilateral retinoblastoma tumours. 15 of the 29 RB1(+/+) tumours had high-level MYCN oncogene amplification (28-121 copies; RB1(+/+)MYCN(A)), whereas none of 93 RB1(-/-) primary tumours tested showed MYCN amplification (p<0·0001). RB1(+/+)MYCN(A) tumours expressed functional RB1 protein, had fewer overall genomic copy-number changes in genes characteristic of retinoblastoma than did RB1(-/-) tumours, and showed distinct aggressive histological features. MYCN amplification was the sole copy-number change in one RB1(+/+)MYCN(A) retinoblastoma. One additional MYCN(A) tumour was discovered after the initial frequencies were determined, and this is included in further analyses. Median age at diagnosis of the 17 children with RB1(+/+)MYCN(A) tumours was 4·5 months (IQR 3·5-10), compared with 24 months (15-37) for 79 children with non-familial unilateral RB1(-/-) retinoblastoma. INTERPRETATION Amplification of the MYCN oncogene might initiate retinoblastoma in the presence of non-mutated RB1 genes. These unilateral RB1(+/+)MYCN(A) retinoblastomas are characterised by distinct histological features, only a few of the genomic copy-number changes that are characteristic of retinoblastoma, and very early age of diagnosis. FUNDING National Cancer Institute-National Institutes of Health, Canadian Institutes of Health Research, German Research Foundation, Canadian Retinoblastoma Society, Hyland Foundation, Toronto Netralaya and Doctors Lions Clubs, Ontario Ministry of Health and Long Term Care, UK-Essen, and Foundations Avanti-STR and KiKa.


Journal of Clinical Investigation | 2010

Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status

Zhe Jiang; Tao Deng; Roger Jones; Huiqin Li; Jason I. Herschkowitz; Jeff C. Liu; Victor J. Weigman; Ming Sound Tsao; Timothy F. Lane; Charles M. Perou; Eldad Zacksenhaus

Breast cancer is a highly heterogeneous disease, with several different subtypes being characterized by distinct histology, gene expression patterns, and genetic alterations. The tumor suppressor gene retinoblastoma 1 (RB1) is frequently lost in both luminal-B and triple-negative tumor (TNT; i.e., estrogen receptor-, progesterone receptor-, and human epidermal growth factor receptor 2-negative) breast cancer subtypes. However, a causal role for RB1 loss in different subtypes remains undefined. Here we report that deletion of Rb alone or together with its relative p107 in mouse mammary stem/bipotent progenitor cells induced focal acinar hyperplasia with squamous metaplasia. These lesions progressed into histologically diverse, transplantable mammary tumors with features of either luminal-B or TNT subtypes. The TNTs included basal-like tumors as well as tumors that exhibited epithelial-to-mesenchymal transition (EMT). The EMT-type tumors and a subset of the basal-like tumors, but not luminal-B-like tumors, expressed mutant forms of the tumor suppressor p53. Accordingly, targeted deletion of both Rb and p53 in stem/bipotent progenitors led to histologically uniform, aggressive, EMT-type tumors. Reintroduction of Rb into these tumor cells suppressed growth in vitro and tumor formation in vivo. These results establish a causal role for Rb loss in breast cancer in mice and demonstrate that cooperating oncogenic events, such as mutations in p53, dictate tumor subtype after Rb inactivation.


Molecular and Cellular Biology | 1993

A bipartite nuclear localization signal in the retinoblastoma gene product and its importance for biological activity.

Eldad Zacksenhaus; Rod Bremner; Robert A. Phillips; Brenda L. Gallie

The retinoblastoma gene product, p110RB1, appears to regulate cell growth by modulating the activities of nuclear transcription factors. The elements that specify the transport of p110RB1 into the nucleus have not yet been explored. We now report the identification of a basic region, KRSAEGGNPPKPLKKLR, in the C terminus of p110RB1, which has sequence similarity to known bipartite nuclear localization signals (NLSs). A two-amino-acid mutation introduced into this putative NLS [to give mutant NLS(NQ)] or deletion of the entire NLS (delta NLS) abrogated exclusive nuclear localization, yielding proteins which were distributed either equally throughout the cell or predominantly in the cytoplasm. A mutant protein [NLS(NQ)/delta 22] containing both the mutated NLS and a deletion of exon 22, previously shown to disrupt the interaction of p110RB1 with several cellular transcription factors and oncoproteins, accumulated only in the cytoplasm. When fused to the C terminus of Escherichia coli beta-galactosidase, the RB1 NLS directed this protein to the nucleus, indicating that the motif is not only necessary but also sufficient for nuclear transport. Neither NLS(NQ) nor delta NLS was hyperphosphorylated in vivo, but both retained their abilities to interact, in vitro, with simian virus 40 large T antigen, adenovirus E1a, and the cellular transcription factor E2F. When transfected at multiple copy number, the NLS mutant alleles displayed reduced biological activity, measured by inhibition of growth of the osteogenic sarcoma cell line Saos-2, which has no wild-type RB1. Naturally occurring mutations and deletions in exon 25 of RB1 which disrupt the NLS may lead to partial or complete inactivation of p110RB1 and may be responsible for some retinoblastoma and other tumors.


Molecular and Cellular Biology | 1999

Fli-1, an Ets-Related Transcription Factor, Regulates Erythropoietin-Induced Erythroid Proliferation and Differentiation: Evidence for Direct Transcriptional Repression of the Rb Gene during Differentiation

Ami Tamir; Jeff Howard; Rachel R. Higgins; You-Jun Li; Lloyd C. Berger; Eldad Zacksenhaus; Marciano Reis; Yaacov Ben-David

ABSTRACT Erythropoietin (Epo) is a major regulator of erythropoiesis that alters the survival, proliferation, and differentiation of erythroid progenitor cells. The mechanism by which these events are regulated has not yet been determined. Using HB60, a newly established erythroblastic cell line, we show here that Epo-induced terminal erythroid differentiation is associated with a transient downregulation in the expression of the Ets-related transcription factor Fli-1. Constitutive expression of Fli-1 in HB60 cells, similar to retroviral insertional activation of Fli-1 observed in Friend murine leukemia virus (F-MuLV)-induced erythroleukemia, blocks Epo-induced differentiation while promoting Epo-induced proliferation. These results suggest that Fli-1 modulates the response of erythroid cells to Epo. To understand the mechanism by which Fli-1 regulates erythropoiesis, we searched for downstream target genes whose expression is regulated by this transcription factor. Here we show that the retinoblastoma (Rb) gene, which was previously shown to be involved in the development of mature erythrocytes, contains a Fli-1 consensus binding site within its promoter. Fli-1 binds to this cryptic Ets consensus site within the Rb promoter and transcriptionally represses Rb expression. Both the expression level and the phosphorylation status of Rb are consistent with the response of HB60 cells to Epo-induced terminal differentiation. We suggest that the negative regulation ofRb by Fli-1 could be one of the critical determinants in erythroid progenitor cell differentiation that is specifically deregulated during F-MuLV-induced erythroleukemia.


Cell Cycle | 2011

RB1 and p53 at the crossroad of EMT and triple-negative breast cancer.

Zhe Jiang; Roger Jones; Jeff C. Liu; Tao Deng; Tyler Robinson; Philip E.D. Chung; Sharon Wang; Jason I. Herschkowitz; Sean E. Egan; Charles M. Perou; Eldad Zacksenhaus

Triple-negative breast cancer (TNBC) is a heterogeneous disease that includes Basal-like and Claudin-low tumors. The Claudin-low tumors are enriched for features associated with epithelial-to-mesenchymal transition (EMT) and possibly for tumor initiating cells. Primary TNBCs respond relatively well to conventional chemotherapy; however, metastatic disease is virtually incurable. Thus, there is a great interest in identifying specific therapeutic targets for TNBC. The tumor suppressor RB1 is frequently lost in Basal-like breast cancer. To test for a causative role of RB1 gene loss in BC and for its effect on specific subtypes, we deleted mouse Rb in mammary stem/bipotent progenitor cells. This led to diverse mammary tumors including TNBC, with a subset of the latter containing p53 mutations and exhibiting features of Basal-like BC or EMT. Combined mutation of Rb and p53 in mammary stem/bipotent progenitors induced EMT type tumors. Here, we review our findings and those of others, which connect Rb and p53 to EMT in TNBC. Furthermore, we discuss how by understanding this circuit and its vulnerabilities, we may identify novel therapy for TNBC.


Cancer Research | 2011

Cooperation between Pik3ca and p53 mutations in mouse mammary tumor formation.

Jessica R. Adams; Keli Xu; Jeff C. Liu; Natalia R. Agamez; Amanda J. Loch; Ruth G. Wong; Wei Wang; Katherine L. Wright; Timothy F. Lane; Eldad Zacksenhaus; Sean E. Egan

PIK3CA, which codes for the p110α catalytic subunit of phosphatidylinositol 3-kinase, is one of the most frequently mutated genes in human breast cancer. Here, we describe a mouse model for PIK3CA-induced breast cancer by using the ROSA26 (R26) knock-in system, in which targeted Pik3ca alleles can be activated through transgenic expression of Cre recombinase. We mated Pik3ca(H1047R) and Pik3ca(wt) knock-in lines with MMTV-Cre transgenics, which express Cre in mammary epithelium. Starting at approximately 5 months of age, female R26-Pik3ca(H1047R);MMTV-Cre mice, but not control R26-Pik3ca(wt);MMTV-Cre mice, developed mammary tumors, as well as lymphoid and skin malignancies. R26-Pik3ca(H1047R);MMTV-Cre mammary tumors were typically either adenosquamous carcinoma or adenomyoepithelioma. As p53 is the most commonly mutated gene in breast cancer, we tested for genetic interaction between Pik3ca(H1047R) and p53 loss-of-function mutations in R26-Pik3ca(H1047R);p53(loxP/+);MMTV-Cre mice. This led to decreased survival of double-mutant animals, which developed lymphoma and mammary tumors with rapid kinetics. Mammary tumors that formed in p53(loxP/+);MMTV-Cre conditional mutants were either poorly differentiated adenocarcinoma or spindle cell/EMT, whereas R26-Pik3ca(H1047R);p53(loxP/+);MMTV-Cre mammary tumors were mostly adenosquamous carcinoma or spindle cell/EMT indicating that double-mutant mice develop a distinct spectrum of mammary tumors. Thus, an oncogenic variant of PIK3CA implicated in multiple human breast cancer subtypes can induce a very diverse spectrum of mammary tumors in mice. Furthermore, Pik3ca(H1047R) shows cooperation with p53, which altered the specific tumors that formed. Thus, the two most frequently mutated genes in human breast cancer show cooperation in mammary tumor formation.


Cancer Cell | 2012

Lunatic Fringe Deficiency Cooperates with the Met/Caveolin Gene Amplicon to Induce Basal-like Breast Cancer

Keli Xu; Jerry Usary; Philaretos C. Kousis; Aleix Prat; Dong-Yu Wang; Jessica R. Adams; Wei Wang; Amanda J. Loch; Tao Deng; Wei Zhao; Robert D. Cardiff; Keejung Yoon; Nicholas Gaiano; Vicki Ling; Joseph Beyene; Eldad Zacksenhaus; Tom Gridley; Wey L. Leong; Cynthia J. Guidos; Charles M. Perou; Sean E. Egan

Basal-like breast cancers (BLBC) express a luminal progenitor gene signature. Notch receptor signaling promotes luminal cell fate specification in the mammary gland, while suppressing stem cell self-renewal. Here we show that deletion of Lfng, a sugar transferase that prevents Notch activation by Jagged ligands, enhances stem/progenitor cell proliferation. Mammary-specific deletion of Lfng induces basal-like and claudin-low tumors with accumulation of Notch intracellular domain fragments, increased expression of proliferation-associated Notch targets, amplification of the Met/Caveolin locus, and elevated Met and Igf-1R signaling. Human BL breast tumors, commonly associated with JAGGED expression, elevated MET signaling, and CAVEOLIN accumulation, express low levels of LFNG. Thus, reduced LFNG expression facilitates JAG/NOTCH luminal progenitor signaling and cooperates with MET/CAVEOLIN basal-type signaling to promote BLBC.


Journal of Cell Biology | 2002

Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma

Zhe Jiang; Eldad Zacksenhaus

The retinoblastoma (Rb) tumor suppressor controls cellular proliferation, survival, and differentiation and is functionally inactivated by mutations or hyperphosphorylation in most human cancers. Although activation of endogenous Rb is thought to provide an effective approach to suppress cell proliferation, long-term inhibition of apoptosis by active Rb may have detrimental consequences in vivo. To directly test these paradigms, we targeted phosphorylation-resistant constitutively active Rb alleles, RbΔKs, to the mouse mammary gland. Pubescent transgenic females displayed reduced ductal elongation and cell proliferation at the endbuds. Postpuberty transgenic mice exhibited precocious cellular differentiation and β-casein expression and extended survival of the mammary epithelium with a moderate but specific effect on the expression of E2F1, IGF1Rα, and phospho–protein kinase B/AKT. Remarkably, ∼30% RbΔK transgenic females developed focal hyperplastic nodules, and ∼7% exhibited full-blown mammary adenocarcinomas within 15 mo. Expression of the RbΔK transgene in these mammary tumors was reduced greatly. Our results suggest that transient activation of Rb induces cancer by extending cell survival and that the dual effects of Rb on cell proliferation and apoptosis impose an inherent caveat to the use of the Rb pathway for long-term cancer therapy.

Collaboration


Dive into the Eldad Zacksenhaus's collaboration.

Top Co-Authors

Avatar

Jeff C. Liu

University Health Network

View shared research outputs
Top Co-Authors

Avatar

Zhe Jiang

University Health Network

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tao Deng

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yaacov Ben-David

Sunnybrook Health Sciences Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge