Rodney Siegel
Edith Cowan University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodney Siegel.
Medicine and Science in Sports and Exercise | 2010
Rodney Siegel; Joseph Maté; Matt Brearley; Greig Watson; Kazunori Nosaka; Paul B. Laursen
PURPOSE To investigate the effect of ice slurry ingestion on thermoregulatory responses and submaximal running time in the heat. METHODS On two separate occasions, in a counterbalanced order, 10 males ingested 7.5 g·kg(-1) of either ice slurry (-1°C) or cold water (4°C) before running to exhaustion at their first ventilatory threshold in a hot environment (34.0°C ± 0.2°C, 54.9% ± 5.9% relative humidity). Rectal and skin temperatures, HR, sweating rate, and ratings of thermal sensation and perceived exertion were measured. RESULTS Running time was longer (P = 0.001) after ice slurry (50.2 ± 8.5 min) versus cold water (40.7 ± 7.2 min) ingestion. Before running, rectal temperature dropped 0.66°C ± 0.14°C after ice slurry ingestion compared with 0.25°C ± 0.09°C (P = 0.001) with cold water and remained lower for the first 30 min of exercise. At exhaustion, however, rectal temperature was higher (P = 0.001) with ice slurry (39.36°C ± 0.41°C) versus cold water ingestion (39.05°C ± 0.37°C). During exercise, mean skin temperature was similar between conditions (P = 0.992), as was HR (P = 0.122) and sweat rate (P = 0.242). After ice slurry ingestion, subjects stored more heat during exercise (100.10 ± 25.00 vs 78.93 ± 20.52 W·m(-2), P = 0.005), and mean ratings of thermal sensation (P = 0.001) and perceived exertion (P = 0.022) were lower. CONCLUSIONS Compared with cold water, ice slurry ingestion lowered preexercise rectal temperature, increased submaximal endurance running time in the heat (+19% ± 6%), and allowed rectal temperature to become higher at exhaustion. As such, ice slurry ingestion may be an effective and practical precooling maneuver for athletes competing in hot environments.
Journal of Sports Sciences | 2012
Rodney Siegel; Joseph Maté; Greig Watson; Kazunori Nosaka; Paul B. Laursen
Abstract The purpose of this study was to compare the effects of pre-exercise ice slurry ingestion and cold water immersion on submaximal running time in the heat. On three separate occasions, eight males ran to exhaustion at their first ventilatory threshold in the heat (34.0 ± 0.1°C, 52 ± 3% relative humidity) following one of three 30 min pre-exercise manoeuvres: (1) ice slurry ingestion; (2) cold water immersion; or (3) warm fluid ingestion (control). Running time was longer following cold water immersion (56.8 ± 5.6 min; P = 0.008) and ice slurry ingestion (52.7 ± 8.4 min; P = 0.005) compared with control (46.7 ± 7.2 min), but not significantly different between cold water immersion and ice slurry ingestion (P = 0.335). During exercise, rectal temperature was lower with cold water immersion from 15 and 20 min into exercise compared with control and ice slurry ingestion, respectively, and remained lower until 40 min (P = 0.001). At exhaustion rectal temperature was significantly higher following ice slurry ingestion (39.76 ± 0.36°C) compared with control (39.48 ± 0.36°C; P = 0.042) and tended to be higher than cold water immersion (39.48 ± 0.34°C; P = 0.065). As run times were similar between conditions, ice slurry ingestion may be a comparable form of pre-cooling to cold water immersion.
Sports Medicine | 2012
Rodney Siegel; Paul B. Laursen
Exercising in hot environments results in a rise in core body temperature; an effect associated with impaired performance over a variety of exercise modes and durations. Precooling has become a popular strategy to combat this impairment, as evidence has shown it to be an effective method for lowering pre-exercise core temperature, increasing heat storage capacity and improving exercise performance in the heat. To date, the majority of precooling manoeuvres have been achieved via external means, such as cold water immersion and the application of cooling garments. However, these methods have been criticized for their lack of practicality for use in major sporting competitions. Recent evidence has shown that internal or endogenous cooling methods, such as drinking cold fluids or ice slurries, are able to lower core temperature and enhance endurance performance in the heat. These methods may be more advantageous than current forms of precooling, as ingesting cold fluids or ice slurries can be easily implemented in the field and provide the additional benefit of hydrating athletes. While the precise mechanisms responsible for these performance enhancements are yet to be fully explained, the effect of ice ingestion on brain temperature, internal thermoreception and sensory responses may be involved. This article addresses the evidence supporting the use of endogenous cooling methods for improving endurance performance in the heat, as well as discussing the potential mechanisms behind the improvements observed and providing practical recommendations to optimize their success.
British Journal of Sports Medicine | 2015
B.A. Wall; Greig Watson; Jeremiah J. Peiffer; Chris R. Abbiss; Rodney Siegel; Paul B. Laursen
Background Laboratory studies that support the hydration guidelines of leading governing bodies have shown that dehydration to only −2% of body mass can lead to increase in body temperature and heart rate during exercise, and decrease in performance. These studies, however, have been conducted in relatively windless environments (ie, wind speed <12.9 km/h), without participants being blinded to their hydration status. Aim To investigate the effect of blinded hydration status on cycling time-trial performance in the heat with ecologically valid facing wind speed conditions. Methods During three experimental trials, 10 cyclists were dehydrated to −3% body mass by performing 2 h of submaximal exercise (walking and cycling) in the heat, before being reinfused with saline to replace 100%, 33% or 0% of fluid losses, leaving them 0%, −2% or −3% hypohydrated, respectively. Participants then completed a 25 km time trial in the heat (33°C, 40% relative humidity; wind speed 32 km/h) during which their starting hydration status was maintained by infusing saline at a rate equal to their sweat rate. The treatment was participant-blinded and the order was randomised. Completion time, power output, heart rate, rectal temperature and perceptual variables were measured. Results While rectal temperature was higher beyond 17 km of the time trial in the −3% vs 0% conditions (38.9±0.3°C vs 38.6±0.3°C; p<0.05), no other differences between trials were shown. Conclusion When well-trained cyclists performed a 25 km cycling time trial under ecologically valid conditions and were blinded to their hydration status, performance, physiological and perceptual variables were not different between trials. These data do not support the residing basis behind many of the current hydration guidelines.
International Journal of Sports Physiology and Performance | 2015
E. Schulze; H.A.M. Daanen; K. Levels; J.R. Casadio; Daniel J. Plews; A.E. Kliding; Rodney Siegel; Paul B. Laursen
PURPOSE To determine the effect of thermal state and thermal comfort on cycling performance in the heat. METHODS Seven well-trained male triathletes completed 3 performance trials consisting of 60 min cycling at a fixed rating of perceived exertion (14) followed immediately by a 20-km time trial in hot (30°C) and humid (80% relative humidity) conditions. In a randomized order, cyclists either drank ambient-temperature (30°C) fluid ad libitum during exercise (CON), drank ice slurry (-1°C) ad libitum during exercise (ICE), or precooled with iced towels and ice slurry ingestion (15 g/kg) before drinking ice slurry ad libitum during exercise (PC+ICE). Power output, rectal temperature, and ratings of thermal comfort were measured. RESULTS Overall mean power output was possibly higher in ICE (+1.4%±1.8% [90% confidence limit]; 0.4> smallest worthwhile change [SWC]) and likely higher PC+ICE (+2.5%±1.9%; 1.5>SWC) than in CON; however, no substantial differences were shown between PC+ICE and ICE (unclear). Time-trial performance was likely enhanced in ICE compared with CON (+2.4%±2.7%; 1.4>SWC) and PC+ICE (+2.9%±3.2%; 1.9>SWC). Differences in mean rectal temperature during exercise were unclear between trials. Ratings of thermal comfort were likely and very likely lower during exercise in ICE and PC+ICE, respectively, than in CON. CONCLUSIONS While PC+ICE had a stronger effect on mean power output compared with CON than ICE did, the ICE strategy enhanced late-stage time-trial performance the most. Findings suggest that thermal comfort may be as important as thermal state for maximizing performance in the heat.
Temperature | 2016
Julia R. Casadio; Andrew E. Kilding; Rodney Siegel; James D. Cotter; Paul B. Laursen
ABSTRACT Purpose: To examine the retention and re-acclimation responses during a periodized heat acclimation (HA) protocol in elite sailors preparing for the 2013 World Championships in Muscat, Oman (∼27–30°C, 40–60% RH). Methods: Two elite male Laser class sailors completed 5 consecutive days of HA (60 min per day in 35°C, 60% RH). Heat response tests (HRT) were performed on day 1 and 5 of HA, then 1 (decay 1, D1) and 2 (D2) weeks following HA. Participants were then re-acclimated (RA) for 2 days, within the next week, before a final HRT ∼72 h post-RA. Rectal temperature, plasma volume, heart rate, sweat rate, as well as thermal discomfort and rating of perceived exertion were measured during each HRT. Results: Rectal temperature decreased with HA (0.46 ± 0.05°C), while individual responses following D1, D2 and RA varied. Heart rate (14 ± 7 bpm), thermal discomfort (0.6 ± 0.1 AU) and rating of perceived exertion (1.8 ± 0.6 AU) decreased across HA, and adaptations were retained by D2. Plasma volume steadily increased over the decay period (D2 = 8.0 ± 1.3%) and after RA (15.5 ± 1.1%) compared with baseline. RA resulted in further thermoregulatory improvements in each Athlete, although individual adjustments varied. Conclusion: Heat strain was reduced in elite Laser sailors following HA and most thermoregulatory adaptations were retained for 2 weeks afterwards. RA may ‘top up’ adaptations after 2 weeks of HA decay.
International Journal of Sports Physiology and Performance | 2016
Katherine T. Oberlin-Brown; Rodney Siegel; Andrew E. Kilding; Paul B. Laursen
UNLABELLED The oral presence of carbohydrate (CHO) and caffeine (CAF) may independently enhance exercise performance, but their influence on performance during prolonged exercise is less known. AIM To determine the independent and combined effects of CHO and CAF administered in chewing gum during a cycling time trial (TT) after prolonged exercise. METHOD Eleven male cyclists (32.2 ± 7.5 y, 74.3 ± 6.8 kg, 60.2 ± 4.0 mL · kg-1 · min-1 VO2peak) performed 4 experimental trials consisting of 90-min constant-load cycling at 80% of their second ventilatory threshold (207 ± 30 W), followed immediately by a 20-km TT. Under double-blinded conditions, cyclists received placebo (PLA), CHO, CAF, or a combined CHO+CAF chewing gum at 0-, 5-, 10-, and 15-km points of the TT. RESULTS Overall TT performance was similar across experimental and PLA trials (%mean difference ± 90%CL 0.2% ± 2.0%, 0.4% ± 2.2%, 0.1% ± 1.8% for CHO, CAF, and CHO+CAF). Compared with PLA, mean power output tended to be higher in the first 2 quarters of the TT with CHO (1.6% ± 3.1% and 0.8% ± 2.0%) and was substantially improved in the last 2 quarters during CAF and CHO+CAF trials (4.2% ± 3.0% and 2.0% ± 1.8%). There were no differences in average heart rate (ES <0.2) and only small changes in blood glucose (ES 0.2), which were unrelated to performance. Blood lactate was substantially higher post-TT for CAF and CHO+CAF (ES >0.6). CONCLUSION After prolonged constant-load cycling, the oral presence of CHO and CAF in chewing gum, independently or in combination, did not improve overall performance but did influence pacing.
European Journal of Applied Physiology | 2011
Rodney Siegel; Joseph Maté; Greig Watson; Kazunori Nosaka; Paul B. Laursen
Archive | 2011
Rodney Siegel; Paul B. Laursen
Cycling Science, 2017, ISBN 9781492551263, págs. 340-351 | 2017
Paul B. Laursen; Daniel J. Plews; Rodney Siegel
Collaboration
Dive into the Rodney Siegel's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputs