Rodolfo Madrid
University of Santiago, Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodolfo Madrid.
Nature Medicine | 2010
Andres Parra; Rodolfo Madrid; Diego Echevarria; Susana del Olmo; Cruz Morenilla-Palao; M. Carmen Acosta; Juana Gallar; Ajay Dhaka; Félix Viana; Carlos Belmonte
Basal tearing is crucial to maintaining ocular surface wetness. Corneal cold thermoreceptors sense small oscillations in ambient temperature and change their discharge accordingly. Deletion of the cold-transducing ion channel Transient receptor potential cation channel subfamily M member 8 (TRPM8) in mice abrogates cold responsiveness and reduces basal tearing without affecting nociceptor-mediated irritative tearing. Warming of the cornea in humans also decreases tearing rate. These findings indicate that TRPM8-dependent impulse activity in corneal cold receptors contributes to regulating basal tear flow.
The Journal of Neuroscience | 2006
Rodolfo Madrid; Tansy Donovan-Rodriguez; Víctor M. Meseguer; Mari Carmen Acosta; Carlos Belmonte; Félix Viana
Transient receptor potential melastatin 8 (TRPM8) is the best molecular candidate for innocuous cold detection by peripheral thermoreceptor terminals. To dissect out the contribution of this cold- and menthol-gated, nonselective cation channel to cold transduction, we identified BCTC [N-(4-tert-butylphenyl)-4-(3-chloropyridin-2-yl)piperazine-1-carboxamide] as a potent and full blocker of recombinant TRPM8 channels. In cold-sensitive trigeminal ganglion neurons of mice and guinea pig, responses to menthol were abolished by BCTC. In contrast, the effect of BCTC on cold-evoked responses was variable but showed a good correlation with the presence or lack of menthol sensitivity in the same neuron, suggesting a specific blocking action of BCTC on TRPM8 channels. The biophysical properties of native cold-gated currents (Icold), and the currents blocked by BCTC were nearly identical, consistent with a role of this channel in cold sensing at the soma. The temperature activation threshold of native TRPM8 channels was significantly warmer than those reported in previous expression studies. The effect of BCTC on nativeIcold was characterized by a dose-dependent shift in the temperature threshold of activation. The role of TRPM8 in transduction was further investigated in the guinea pig cornea, a peripheral territory densely innervated with cold thermoreceptors. All cold-sensitive terminals were activated by menthol, suggesting the functional expression of TRPM8 channels in their membrane. However, the spontaneous activity and firing pattern characteristic of cold thermoreceptors was totally immune to TRPM8 channel blockade with BCTC or SKF96365 (1-[2-(4-methoxyphenyl)-2-[3-(4-methoxyphenyl)propoxy]ethyl-1H-imidazole hydrochloride). Cold-evoked responses in corneal terminals were also essentially unaffected by these drugs, whereas responses to menthol were completely abolished. The minor impairment in the ability to transduce cold stimuli by peripheral corneal thermoreceptors during TRPM8 blockade unveils an overlapping functional role for various thermosensitive mechanisms in these nerve terminals.
The Journal of Neuroscience | 2009
Rodolfo Madrid; Elvira de la Peña; Tansy Donovan-Rodriguez; Carlos Belmonte; Félix Viana
Molecular determinants of threshold differences among cold thermoreceptors are unknown. Here we show that such differences correlate with the relative expression of I KD, a current dependent on Shaker-like Kv1 channels that acts as an excitability brake, and I TRPM8, a cold-activated excitatory current. Neurons responding to small temperature changes have high functional expression of TRPM8 (transient receptor potential cation channel, subfamily M, member 8) and low expression of I KD. In contrast, neurons activated by lower temperatures have a lower expression of TRPM8 and a prominent I KD. Otherwise, both subpopulations have nearly identical membrane and firing properties, suggesting that they belong to the same neuronal pool. Blockade of I KD shifts the threshold of cold-sensitive neurons to higher temperatures and augments cold-evoked nocifensive responses in mice. Similar behavioral effects of I KD blockade were observed in TRPA1−/− mice. Moreover, only a small percentage of trigeminal cold-sensitive neurons were activated by TRPA1 agonists, suggesting that TRPA1 does not play a major role in the detection of low temperatures by uninjured somatic cold-specific thermosensory neurons under physiological conditions. Collectively, these findings suggest that innocuous cooling sensations and cold discomfort are signaled by specific low- and high-threshold cold thermoreceptor neurons, differing primarily in their relative expression of two ion channels having antagonistic effects on neuronal excitability. Thus, although TRPM8 appears to function as a critical cold sensor in the majority of peripheral sensory neurons, the expression of Kv1 channels in the same terminals seem to play an important role in the peripheral gating of cold-evoked discomfort and pain.
Journal of Neurophysiology | 2013
Elsa Fritz; Pamela Izaurieta; Alexandra Weiss; Franco Rafael Mir; Patricio Rojas; David Gonzalez; Fabiola Rojas; Robert H. Brown; Rodolfo Madrid; Brigitte van Zundert
Amyotrophic lateral sclerosis (ALS) is a devastating paralytic disorder caused by dysfunction and degeneration of motoneurons starting in adulthood. Recent studies using cell or animal models document that astrocytes expressing disease-causing mutations of human superoxide dismutase 1 (hSOD1) contribute to the pathogenesis of ALS by releasing a neurotoxic factor(s). Neither the mechanism by which this neurotoxic factor induces motoneuron death nor its cellular site of action has been elucidated. Here we show that acute exposure of primary wild-type spinal cord cultures to conditioned medium derived from astrocytes expressing mutant SOD1 (ACM-hSOD1(G93A)) increases persistent sodium inward currents (PC(Na)), repetitive firing, and intracellular calcium transients, leading to specific motoneuron death days later. In contrast to TTX, which paradoxically increased twofold the amplitude of calcium transients and killed motoneurons, reduction of hyperexcitability by other specific (mexiletine) and nonspecific (spermidine and riluzole) blockers of voltage-sensitive sodium (Na(v)) channels restored basal calcium transients and prevented motoneuron death induced by ACM-hSOD1(G93A). These findings suggest that riluzole, the only FDA-approved drug with known benefits for ALS patients, acts by inhibiting hyperexcitability. Together, our data document that a critical element mediating the non-cell-autonomous toxicity of ACM-hSOD1(G93A) on motoneurons is increased excitability, an observation with direct implications for therapy of ALS.
Journal of Biological Chemistry | 2012
María Pertusa; Rodolfo Madrid; Cruz Morenilla-Palao; Carlos Belmonte; Félix Viana
Background: TRPM8 channel is N-glycosylated, a post-translational modification affecting trafficking and gating properties of other TRP channels. Results: Preventing N-glycosylation reduces responses of TRPM8 to agonists (cold and menthol) due to a change in its biophysical properties. Conclusion: N-Glycosylation is an important determinant of TRPM8 sensitivity to chemical and thermal stimuli. Significance: N-Glycosylation of TRPM8 could play a modulatory role in cold thermoreceptor activity. TRPM8 is a member of the transient receptor potential ion channel superfamily, which is expressed in sensory neurons and is activated by cold and cooling compounds, such as menthol. Activation of TRPM8 by agonists takes place through shifts in its voltage activation curve, allowing channel opening at physiological membrane potentials. Here, we studied the role of the N-glycosylation occurring at the pore loop of TRPM8 on the function of the channel. Using heterologous expression of recombinant channels in HEK293 cells we found that the unglycosylated TRPM8 mutant (N934Q) displays marked functional differences compared with the wild type channel. These differences include a shift in the threshold of temperature activation and a reduced response to menthol and cold stimuli. Biophysical analysis indicated that these modifications are due to a shift in the voltage dependence of TRPM8 activation toward more positive potentials. By using tunicamycin, a drug that prevents N-glycosylation of proteins, we also evaluated the effect of the N-glycosylation on the responses of trigeminal sensory neurons expressing TRPM8. These experiments showed that the lack of N-glycosylation affects the function of native TRPM8 ion channels in a similar way to heterologously expressed ones, causing an important shift of the temperature threshold of cold-sensitive thermoreceptor neurons. Altogether, these results indicate that post-translational modification of TRPM8 is an important mechanism modulating cold thermoreceptor function, explaining the marked differences in temperature sensitivity observed between recombinant and native TRPM8 ion channels.
Physiology | 2011
Ramon Latorre; Sebastian Brauchi; Rodolfo Madrid; Patricio Orio
Transient receptor potential melastatin 8 (TRPM8), a calcium-permeable cation channel activated by cold, cooling compounds and voltage, is the main molecular entity responsible for detection of cold temperatures in the somatosensory system. Here, we review the biophysical properties, physiological role, and near-membrane trafficking of this exciting polymodal ion channel.
Journal of Neurophysiology | 2012
Patricio Orio; Andres Parra; Rodolfo Madrid; Omar Gonzalez Gonzalez; Carlos Belmonte; Félix Viana
Mammalian peripheral cold thermoreceptors respond to cooling of their sensory endings with an increase in firing rate and modification of their discharge pattern. We recently showed that cultured trigeminal cold-sensitive (CS) neurons express a prominent hyperpolarization-activated current (I(h)), mainly carried by HCN1 channels, supporting subthreshold resonance in the soma without participating in the response to acute cooling. However, peripheral pharmacological blockade of I(h), or characterization of HCN1(-/-) mice, reveals a deficit in acute cold detection. Here we investigated the role of I(h) in CS nerve endings, where cold sensory transduction actually takes place. Corneal CS nerve endings in mice show a rhythmic spiking activity at neutral skin temperature that switches to bursting mode when the temperature is lowered. I(h) blockers ZD7288 and ivabradine alter firing patterns of CS nerve endings, lengthening interspike intervals and inducing bursts at neutral skin temperature. We characterized the CS nerve endings from HCN1(-/-) mouse corneas and found that they behave similar to wild type, although with a lower slope in the firing frequency vs. temperature relationship, thus explaining the deficit in cold perception of HCN1(-/-) mice. The firing pattern of nerve endings from HCN1(-/-) mice was also affected by ZD7288, which we attribute to the presence of HCN2 channels in the place of HCN1. Mathematical modeling shows that the firing phenotype of CS nerve endings from HCN1(-/-) mice can be reproduced by replacing HCN1 channels with the slower HCN2 channels rather than by abolishing I(h). We propose that I(h) carried by HCN1 channels helps tune the frequency of the oscillation and the length of bursts underlying regular spiking in cold thermoreceptors, having important implications for neural coding of cold sensation.
The Plant Cell | 2015
Luis Arias-Darraz; Deny Cabezas; Charlotte K. Colenso; Melissa Alegría-Arcos; Felipe Bravo-Moraga; Ignacio Varas-Concha; Daniel Almonacid; Rodolfo Madrid; Sebastian Brauchi
A transient receptor potential channel from a green alga shares key features with its mammalian counterparts, suggesting that its basic characteristics evolved early in eukaryotic history. Sensory modalities are essential for navigating through an ever-changing environment. From insects to mammals, transient receptor potential (TRP) channels are known mediators for cellular sensing. Chlamydomonas reinhardtii is a motile single-celled freshwater green alga that is guided by photosensory, mechanosensory, and chemosensory cues. In this type of alga, sensory input is first detected by membrane receptors located in the cell body and then transduced to the beating cilia by membrane depolarization. Although TRP channels seem to be absent in plants, C. reinhardtii possesses genomic sequences encoding TRP proteins. Here, we describe the cloning and characterization of a C. reinhardtii version of a TRP channel sharing key features present in mammalian TRP channels associated with sensory transduction. In silico sequence-structure analysis unveiled the modular design of TRP channels, and electrophysiological experiments conducted on Human Embryonic Kidney-293T cells expressing the Cr-TRP1 clone showed that many of the core functional features of metazoan TRP channels are present in Cr-TRP1, suggesting that basic TRP channel gating characteristics evolved early in the history of eukaryotes.
PLOS ONE | 2015
Erick Olivares; Simón Salgado; Jean Paul Maidana; Gaspar Herrera; Matías Campos; Rodolfo Madrid; Patricio Orio
Cold-sensitive nerve terminals (CSNTs) encode steady temperatures with regular, rhythmic temperature-dependent firing patterns that range from irregular tonic firing to regular bursting (static response). During abrupt temperature changes, CSNTs show a dynamic response, transiently increasing their firing frequency as temperature decreases and silencing when the temperature increases (dynamic response). To date, mathematical models that simulate the static response are based on two depolarizing/repolarizing pairs of membrane ionic conductance (slow and fast kinetics). However, these models fail to reproduce the dynamic response of CSNTs to rapid changes in temperature and notoriously they lack a specific cold-activated conductance such as the TRPM8 channel. We developed a model that includes TRPM8 as a temperature-dependent conductance with a calcium-dependent desensitization. We show by computer simulations that it appropriately reproduces the dynamic response of CSNTs from mouse cornea, while preserving their static response behavior. In this model, the TRPM8 conductance is essential to display a dynamic response. In agreement with experimental results, TRPM8 is also needed for the ongoing activity in the absence of stimulus (i.e. neutral skin temperature). Free parameters of the model were adjusted by an evolutionary optimization algorithm, allowing us to find different solutions. We present a family of possible parameters that reproduce the behavior of CSNTs under different temperature protocols. The detection of temperature gradients is associated to a homeostatic mechanism supported by the calcium-dependent desensitization.
Journal of Biological Chemistry | 2014
María Pertusa; Alejandro González; Paulina Hardy; Rodolfo Madrid; Félix Viana
Background: The functional role of the TRPM8 N terminus remains poorly understood. Results: Truncation of the first 40 residues increases TRPM8 responses to cold and menthol, whereas deletions within the 40–60-residue region yield nonfunctional channels retained in the ER. Conclusion: Initial N terminus of TRPM8 is important for proper biogenesis and function. Significance: Variations within the N terminus can modulate thermal and chemical sensitivity of TRPM8. TRPM8, a nonselective cation channel activated by cold, voltage, and cooling compounds such as menthol, is the principal molecular detector of cold temperatures in primary sensory neurons of the somatosensory system. The N-terminal domain of TRPM8 consists of 693 amino acids, but little is known about its contribution to channel function. Here, we identified two distinct regions within the initial N terminus of TRPM8 that contribute differentially to channel activity and proper folding and assembly. Deletion or substitution of the first 40 residues yielded channels with augmented responses to cold and menthol. The thermal threshold of activation of these mutants was shifted 2 °C to higher temperatures, and the menthol dose-response curve was displaced to lower concentrations. Site-directed mutagenesis screening revealed that single point mutations at positions Ser-26 or Ser-27 by proline caused a comparable increase in the responses to cold and menthol. Electrophysiological analysis of the S27P mutant revealed that the enhanced sensitivity to agonists is related to a leftward shift in the voltage dependence of activation, increasing the probability of channel openings at physiological membrane potentials. In addition, we found that the region encompassing positions 40–60 is a key element in the proper folding and assembly of TRPM8. Different deletions and mutations within this region rendered channels with an impaired function that are retained within the endoplasmic reticulum. Our results suggest a critical contribution of the initial region of the N-terminal domain of TRPM8 to thermal and chemical sensitivity and the proper biogenesis of this polymodal ion channel.