Rodrigo Carvalho
Universidade Federal de Minas Gerais
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rodrigo Carvalho.
Frontiers in Microbiology | 2012
Luis G. C. Pacheco; Thiago Luiz de Paula Castro; Rodrigo Carvalho; Pablo M. R. O. Moraes; Fernanda Alves Dorella; Natália B. Carvalho; Susan E. Slade; James H. Scrivens; Martin Feelisch; Roberto Meyer; Anderson Miyoshi; Sergio C. Oliveira; Christopher G. Dowson; Vasco Azevedo
Pathogenic intracellular bacteria can respond to antimicrobial mechanisms of the host cell through transient activation of stress-responsive genes by alternative sigma (σ) factors of the RNA polymerase. We evaluated the contribution of the extracytoplasmic function sigma factor σE for Corynebacterium pseudotuberculosis resistance to stress conditions resembling those found intracellularly during infection. A sigE-null mutant strain (ΔsigE) of this bacterium was more susceptible in vitro to acidic pH, cell surface stressors, and biologically relevant concentrations of nitric oxide (NO). The same mutant strain was unable to persist in C57BL/6 mice but remained infective in mice lacking inducible nitric oxide synthase (iNOS), confirming the significance of σE for resistance to nitric oxide/peroxide stress in vivo. High-throughput proteomic analysis identified NO-responsive extracellular proteins of C. pseudotuberculosis and demonstrated the participation of σE in composition of this bacterium’s exoproteome.
BMC Genomics | 2014
Wanderson M. Silva; Rodrigo Carvalho; Siomar de Castro Soares; Isabela Fs Bastos; Edson L. Folador; Gustavo Hmf Souza; Yves Le Loir; Anderson Miyoshi; Artur Silva; Vasco Azevedo
BackgroundCorynebacterium pseudotuberculosis biovar ovis is a facultative intracellular pathogen, and the etiological agent of caseous lymphadenitis in small ruminants. During the infection process, the bacterium is subjected to several stress conditions, including nitrosative stress, which is caused by nitric oxide (NO). In silico analysis of the genome of C. pseudotuberculosis ovis 1002 predicted several genes that could influence the resistance of this pathogen to nitrosative stress. Here, we applied high-throughput proteomics using high definition mass spectrometry to characterize the functional genome of C. pseudotuberculosis ovis 1002 in the presence of NO-donor Diethylenetriamine/nitric oxide adduct (DETA/NO), with the aim of identifying proteins involved in nitrosative stress resistance.ResultsWe characterized 835 proteins, representing approximately 41% of the predicted proteome of C. pseudotuberculosis ovis 1002, following exposure to nitrosative stress. In total, 102 proteins were exclusive to the proteome of DETA/NO-induced cells, and a further 58 proteins were differentially regulated between the DETA/NO and control conditions. An interactomic analysis of the differential proteome of C. pseudotuberculosis in response to nitrosative stress was also performed. Our proteomic data set suggested the activation of both a general stress response and a specific nitrosative stress response, as well as changes in proteins involved in cellular metabolism, detoxification, transcriptional regulation, and DNA synthesis and repair.ConclusionsOur proteomic analysis validated previously-determined in silico data for C. pseudotuberculosis ovis 1002. In addition, proteomic screening performed in the presence of NO enabled the identification of a set of factors that can influence the resistance and survival of C. pseudotuberculosis during exposure to nitrosative stress.
Microbial Cell Factories | 2017
Rodrigo Carvalho; Natalia Breyner; Zélia Menezes-Garcia; Núbia Morais Rodrigues; Luisa Lemos; Tatiane Uceli Maioli; Danielle da Glória Souza; Denise Carmona; Ana Maria Caetano Faria; Philippe Langella; Jean-Marc Chatel; Luis G. Bermúdez-Humarán; Henrique César Pereira Figueiredo; Vasco Azevedo; Marcela de Azevedo
BackgroundMucositis is one of the most relevant gastrointestinal inflammatory conditions in humans, generated by the use of chemotherapy drugs, such as 5-fluoracil (5-FU). 5-FU-induced mucositis affects 80% of patients undergoing oncological treatment causing mucosal gut dysfunctions and great discomfort. As current therapy drugs presents limitations in alleviating mucositis symptoms, alternative strategies are being pursued. Recent studies have shown that the antimicrobial pancreatitis-associated protein (PAP) has a protective role in intestinal inflammatory processes. Indeed, it was demonstrated that a recombinant strain of Lactococcus lactis expressing human PAP (LL-PAP) could prevent and improve murine DNBS-induced colitis, an inflammatory bowel disease (IBD) that causes severe inflammation of the colon. Hence, in this study we sought to evaluate the protective effects of LL-PAP on 5-FU-induced experimental mucositis in BALB/c mice as a novel approach to treat the disease.ResultsOur results show that non-recombinant L. lactis NZ9000 have antagonistic activity, in vitro, against the enteroinvasive gastrointestinal pathogen L. monocytogenes and confirmed PAP inhibitory effect against Opportunistic E. faecalis. Moreover, L. lactis was able to prevent histological damage, reduce neutrophil and eosinophil infiltration and secretory Immunoglobulin-A in mice injected with 5-FU. Recombinant lactococci carrying antimicrobial PAP did not improve those markers of inflammation, although its expression was associated with villous architecture preservation and increased secretory granules density inside Paneth cells in response to 5-FU inflammation.ConclusionsWe have demonstrated for the first time that L. lactis NZ9000 by itself, is able to prevent 5-FU-induced intestinal inflammation in BALB/c mice. Moreover, PAP delivered by recombinant L. lactis strain showed additional protective effects in mice epithelium, revealing to be a promising strategy to treat intestinal mucositis.
Virulence | 2014
Bianca Mendes Souza; Thiago Luiz de Paula Castro; Rodrigo Carvalho; Núbia Seyffert; Artur Silva; Anderson Miyoshi; Vasco Azevedo
The survival of bacteria to different environmental conditions depends on the activation of adaptive mechanisms, which are intricately driven through gene regulation. Because transcriptional initiation is considered to be the major step in the control of bacterial genes, we discuss the characteristics and roles of the sigma factors, addressing (1) their structural, functional and phylogenetic classification; (2) how their activity is regulated; and (3) the promoters recognized by these factors. Finally, we focus on a specific group of alternative sigma factors, the so-called σECF factors, in Bacillus subtilis and some of the main species that comprise the CMNR group, providing information on the roles they play in the microorganisms’ physiology and indicating some of the genes whose transcription they regulate.
Frontiers in Microbiology | 2017
Rodrigo Carvalho; Fillipe Luiz Rosa do Carmo; Alberto de Oliveira Junior; Philippe Langella; Jean-Marc Chatel; Luis G. Bermúdez-Humarán; Vasco Azevedo; Marcela de Azevedo
The human gastrointestinal tract (GIT) is highly colonized by bacterial communities, which live in a symbiotic relationship with the host in normal conditions. It has been shown that a dysfunctional interaction between the intestinal microbiota and the host immune system, known as dysbiosis, is a very important factor responsible for the development of different inflammatory conditions of the GIT, such as the idiopathic inflammatory bowel diseases (IBD), a complex and multifactorial disorder of the GIT. Dysbiosis has also been implicated in the pathogenesis of other GIT inflammatory diseases such as mucositis usually caused as an adverse effect of chemotherapy. As both diseases have become a great clinical problem, many research groups have been focusing on developing new strategies for the treatment of IBD and mucositis. In this review, we show that lactic acid bacteria (LAB) have been capable in preventing and treating both disorders in animal models, suggesting they may be ready for clinical trials. In addition, we present the most current studies on the use of wild type or genetically engineered LAB strains designed to express anti-inflammatory proteins as a promising strategy in the treatment of IBD and mucositis.
Microbial Biotechnology | 2013
Thiago Luiz de Paula Castro; Núbia Seyffert; Rommel Thiago Jucá Ramos; Silvanira Barbosa; Rodrigo Carvalho; Anne Cybelle Pinto; Adriana Ribeiro Carneiro; Wanderson M. Silva; Luis G. C. Pacheco; Christopher G. Downson; Maria Paula Cruz Schneider; Anderson Miyoshi; Vasco Azevedo; Artur Silva
Corynebacterium pseudotuberculosis equi is a Gram‐positive pathogenic bacterium which affects a variety of hosts. Besides the great economic losses it causes to horse‐breeders, this organism is also known to be an important infectious agent to cattle and buffaloes. As an outcome of the efforts in characterizing the molecular basis of its virulence, several complete genome sequences were made available in recent years, enabling the large‐scale assessment of genes throughout distinct isolates. Meanwhile, the RNA‐seq stood out as the technology of choice for comprehensive transcriptome studies, which may bring valuable information regarding active genomic regions, despite of the still impeditive associated costs. In an attempt to increase the use of generated reads per instrument run, by effectively eliminating unwanted rRNAs from total RNA samples without relying on any commercially available kits, we applied denaturing high‐performance liquid chromatography (DHPLC) as an alternative method to assess the transcriptional profile of C. pseudotuberculosis. We have found that the DHPLC depletion method, allied to Ion Torrent sequencing, allows mapping of transcripts in a comprehensive way and identifying novel transcripts when a de novo approach is used. These data encourage us to use DHPLC in future transcriptional evaluations in C. pseudotuberculosis.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2014
Daiane M. Carvalho; Pablo de Sá; Thiago Luiz de Paula Castro; Rodrigo Carvalho; Anne Cybelle Pinto; Danilo J. P. Gil; Priscilla Bagano; Bruno Lopes Bastos; Lília Moura Costa; Roberto Meyer; Artur Silva; Vasco Azevedo; Rommel Thiago Jucá Ramos; Luis G. C. Pacheco
Reference genes presenting stable expression profiles over a wide variety of conditions are required in relative expression studies of specific bacterial genes by quantitative reverse transcription PCR (RT-qPCR). High-throughput sequencing of bacterial transcriptomes using the RNA-seq methodology now provides a wealth of data that may be searched for identification of the most stably expressed genes of a given bacterium. Herein, we searched a RNA-seq dataset from various experiments with the pathogenic bacterium Corynebacterium pseudotuberculosis, grown under different stress conditions, in order to select appropriate candidate reference genes for this species. Nineteen genes involved in maintenance of basic cellular functions, so-called housekeeping genes, were chosen for study and their expression profiles in C. pseudotuberculosis were evaluated throughout all growth conditions. Eight of these genes (atpA, dnaG, efp, fusA, gyrA, gyrB, rpoB, and rpoC), mostly participating in DNA replication and transcription, matched the defined criteria to be included as candidate reference genes. Transcriptional levels of these genes were quantified by RT-qPCR assays after growth of C. pseudotuberculosis under two additional conditions. Expression stability analysis by NormFinder indicated the combination of genes encoding DNA gyrase subunit A (gyrA) and elongation factor P (fusA) as the most suitable for normalization of RT-qPCR studies in C. pseudotuberculosis.
Frontiers in Microbiology | 2018
Fillipe Luiz Rosa do Carmo; Houem Rabah; Rodrigo Carvalho; Floriane Gaucher; Barbara F. Cordeiro; Sara H. da Silva; Yves Le Loir; Vasco Azevedo; Gwénaël Jan
Some Gram-positive bacteria, including probiotic ones, are covered with an external proteinaceous layer called a surface-layer. Described as a paracrystalline layer and formed by the self-assembly of a surface-layer-protein (Slp), this optional structure is peculiar. The surface layer per se is conserved and encountered in many prokaryotes. However, the sequence of the corresponding Slp protein is highly variable among bacterial species, or even among strains of the same species. Other proteins, including surface layer associated proteins (SLAPs), and other non-covalently surface-bound proteins may also be extracted with this surface structure. They can be involved a various functions. In probiotic Gram-positives, they were shown by different authors and experimental approaches to play a role in key interactions with the host. Depending on the species, and sometime on the strain, they can be involved in stress tolerance, in survival within the host digestive tract, in adhesion to host cells or mucus, or in the modulation of intestinal inflammation. Future trends include the valorization of their properties in the formation of nanoparticles, coating and encapsulation, and in the development of new vaccines.
Scientific Reports | 2018
Rodrigo Carvalho; Aline B.M. Vaz; Felipe L. Pereira; Fernanda Alves Dorella; Eric Aguiar; Jean-Marc Chatel; Luis Bermudez; Philippe Langella; Gabriel da Rocha Fernandes; Henrique César Pereira Figueiredo; Aristóteles Góes-Neto; Vasco Azevedo
Mucositis is an inflammatory condition of the gut, caused by an adverse effect of chemotherapy drugs, such as 5-fluorouracil (5-FU). In an attempt to develop alternative treatments for the disease, several research groups have proposed the use of probiotics, in particular, Lactic Acid Bacteria (LAB). In this context, the use of recombinant LAB, for delivering anti-inflammatory compounds has also been explored. In previous work, we demonstrated that either Lactococcus lactis NZ9000 or a recombinant strain expressing an antimicrobial peptide involved in human gut homeostasis, the Pancreatitis-associated Protein (PAP), could ameliorate 5-FU-induced mucositis in mice. However, the impact of these strains on the gut microbiota still needs to be elucidated. Therefore, in the present study, we aimed to characterize the effects of both Lactococci strains in the gut microbiome of mice through a 16 S rRNA gene sequencing metagenomic approach. Our data show 5-FU caused a significant decrease in protective bacteria and increase of several bacteria associated with pro-inflammatory traits. The Lactococci strains were shown to reduce several potential opportunistic microbes, while PAP delivery was able to suppress the growth of Enterobacteriaceae during inflammation. We conclude the strain secreting antimicrobial PAP was more effective in the control of 5-FU-dysbiosis.
Frontiers in Microbiology | 2018
Fillipe Luiz Rosa do Carmo; Wanderson M. Silva; Guilherme C. Tavares; Izabela Coimbra Ibraim; Barbara F. Cordeiro; Emiliano R. Oliveira; Houem Rabah; Chantal Cauty; Sara H. da Silva; Marcus Vinicius Canário Viana; Ana C. B. Caetano; Roselane G. dos Santos; Rodrigo Carvalho; Julien Jardin; Felipe L. Pereira; Edson L. Folador; Yves Le Loir; Henrique César Pereira Figueiredo; Gwénaël Jan; Vasco Azevedo
Propionibacterium freudenreichii is a beneficial Gram-positive bacterium, traditionally used as a cheese-ripening starter, and currently considered as an emerging probiotic. As an example, the P. freudenreichii CIRM-BIA 129 strain recently revealed promising immunomodulatory properties. Its consumption accordingly exerts healing effects in different animal models of colitis, suggesting a potent role in the context of inflammatory bowel diseases. This anti-inflammatory effect depends on surface layer proteins (SLPs). SLPs may be involved in key functions in probiotics, such as persistence within the gut, adhesion to host cells and mucus, or immunomodulation. Several SLPs coexist in P. freudenreichii CIRM-BIA 129 and mediate immunomodulation and adhesion. A mutant P. freudenreichii CIRM-BIA 129ΔslpB (CB129ΔslpB) strain was shown to exhibit decreased adhesion to intestinal epithelial cells. In the present study, we thoroughly analyzed the impact of this mutation on cellular properties. Firstly, we investigated alterations of surface properties in CB129ΔslpB. Surface extractable proteins, surface charges (ζ-potential) and surface hydrophobicity were affected by the mutation. Whole-cell proteomics, using high definition mass spectrometry, identified 1,288 quantifiable proteins in the wild-type strain, i.e., 53% of the theoretical proteome predicted according to P. freudenreichii CIRM-BIA 129 genome sequence. In the mutant strain, we detected 1,252 proteins, including 1,227 proteins in common with the wild-type strain. Comparative quantitative analysis revealed 97 proteins with significant differences between wild-type and mutant strains. These proteins are involved in various cellular process like signaling, metabolism, and DNA repair and replication. Finally, in silico analysis predicted that slpB gene is not part of an operon, thus not affecting the downstream genes after gene knockout. This study, in accordance with the various roles attributed in the literature to SLPs, revealed a pleiotropic effect of a single slpB mutation, in the probiotic P. freudenreichii. This suggests that SlpB may be at a central node of cellular processes and confirms that both nature and amount of SLPs, which are highly variable within the P. freudenreichii species, determine the probiotic abilities of strains.