Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rodrigo Vargas Honorato is active.

Publication


Featured researches published by Rodrigo Vargas Honorato.


BMC Bioinformatics | 2014

KVFinder: steered identification of protein cavities as a PyMOL plugin

Saulo Henrique Pires de Oliveira; Felipe Augusto Nunes Ferraz; Rodrigo Vargas Honorato; José Xavier-Neto; Tiago J. P. Sobreira; Paulo Sergio Lopes de Oliveira

BackgroundThe characterization of protein binding sites is a major challenge in computational biology. Proteins interact with a wide variety of molecules and understanding of such complex interactions is essential to gain deeper knowledge of protein function. Shape complementarity is known to be important in determining protein-ligand interactions. Furthermore, these protein structural features have been shown to be useful in assisting medicinal chemists during lead discovery and optimization.ResultsWe developed KVFinder, a highly versatile and easy-to-use tool for cavity prospection and spatial characterization. KVFinder is a geometry-based method that has an innovative customization of the search space. This feature provides the possibility of cavity segmentation, which alongside with the large set of customizable parameters, allows detailed cavity analyses. Although the main focus of KVFinder is the steered prospection of cavities, we tested it against a benchmark dataset of 198 known drug targets in order to validate our software and compare it with some of the largely accepted methods. Using the one click mode, we performed better than most of the other methods, staying behind only of hybrid prospection methods. When using just one of KVFinder’s customizable features, we were able to outperform all other compared methods. KVFinder is also user friendly, as it is available as a PyMOL plugin, or command-line version.ConclusionKVFinder presents novel usability features, granting full customizable and highly detailed cavity prospection on proteins, alongside with a friendly graphical interface. KVFinder is freely available on http://lnbio.cnpem.br/bioinformatics/main/software/.


Journal of Biological Chemistry | 2013

Active Glutaminase C Self-assembles into a Supratetrameric Oligomer That Can Be Disrupted by an Allosteric Inhibitor

Amanda Petrina Scotá Ferreira; Alexandre Cassago; Kaliandra de Almeida Gonçalves; Marília Meira Dias; Douglas Adamoski; Carolline Fernanda Rodrigues Ascenção; Rodrigo Vargas Honorato; Juliana Ferreira de Oliveira; Igor Monteze Ferreira; Camila Fornezari; Jefferson Bettini; Paulo Sergio Lopes de Oliveira; Adriana Franco Paes Leme; Rodrigo V. Portugal; Andre Luis Berteli Ambrosio; Sandra Martha Gomes Dias

Background: GAC supplies for increased metabolic needs of tumors because of exclusive localization and kinetic properties. Results: Higher than tetramer oligomers are the active form in in vitro and in cellular assays. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide disrupts oligomers. Conclusion: A novel molecular mechanism for GAC activation is proposed. Significance: The data affect the development of therapies targeting GAC in tumors, with emphasis on allosteric inhibitors. The phosphate-dependent transition between enzymatically inert dimers into catalytically capable tetramers has long been the accepted mechanism for the glutaminase activation. Here, we demonstrate that activated glutaminase C (GAC) self-assembles into a helical, fiber-like double-stranded oligomer and propose a molecular model consisting of seven tetramer copies per turn per strand interacting via the N-terminal domains. The loop 321LRFNKL326 is projected as the major regulating element for self-assembly and enzyme activation. Furthermore, the previously identified in vivo lysine acetylation (Lys311 in humans, Lys316 in mouse) is here proposed as an important down-regulator of superoligomer assembly and protein activation. Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide, a known glutaminase inhibitor, completely disrupted the higher order oligomer, explaining its allosteric mechanism of inhibition via tetramer stabilization. A direct correlation between the tendency to self-assemble and the activity levels of the three mammalian glutaminase isozymes was established, with GAC being the most active enzyme while forming the longest structures. Lastly, the ectopic expression of a fiber-prone superactive GAC mutant in MDA-MB 231 cancer cells provided considerable proliferative advantages to transformed cells. These findings yield unique implications for the development of GAC-oriented therapeutics targeting tumor metabolism.


Journal of Biological Chemistry | 2012

Identification of Novel Interaction between ADAM17 (a Disintegrin and Metalloprotease 17) and Thioredoxin-1

Annelize Zambon Barbosa Aragão; Maria Luiza C. Nogueira; Daniela C. Granato; Fernando M. Simabuco; Rodrigo Vargas Honorato; Zaira Hoffman; Sami Yokoo; Francisco R.M. Laurindo; Fabio M. Squina; Ana Carolina de Mattos Zeri; Paulo Sergio Lopes de Oliveira; Nicholas E. Sherman; Adriana Franco Paes Leme

Background: The identification of potential interaction partners for TACE could be instrumental in understanding the regulation of TACE activity. Results: Trx-1 interacts with the cytoplasmic domain of ADAM17. Conclusion: Trx-1 regulates ADAM17 activity. Significance: The data suggest a negative ADAM17 regulation in the HB-EGF shedding model. ADAM17, which is also known as TNFα-converting enzyme, is the major sheddase for the EGF receptor ligands and is considered to be one of the main proteases responsible for the ectodomain shedding of surface proteins. How a membrane-anchored proteinase with an extracellular catalytic domain can be activated by inside-out regulation is not completely understood. We characterized thioredoxin-1 (Trx-1) as a partner of the ADAM17 cytoplasmic domain that could be involved in the regulation of ADAM17 activity. We induced the overexpression of the ADAM17 cytoplasmic domain in HEK293 cells, and ligands able to bind this domain were identified by MS after protein immunoprecipitation. Trx-1 was also validated as a ligand of the ADAM17 cytoplasmic domain and full-length ADAM17 recombinant proteins by immunoblotting, immunolocalization, and solid phase binding assay. In addition, using nuclear magnetic resonance, it was shown in vitro that the titration of the ADAM17 cytoplasmic domain promotes changes in the conformation of Trx-1. The MS analysis of the cross-linked complexes showed cross-linking between the two proteins by lysine residues. To further evaluate the functional role of Trx-1, we used a heparin-binding EGF shedding cell model and observed that the overexpression of Trx-1 in HEK293 cells could decrease the activity of ADAM17, activated by either phorbol 12-myristate 13-acetate or EGF. This study identifies Trx-1 as a novel interaction partner of the ADAM17 cytoplasmic domain and suggests that Trx-1 is a potential candidate that could be involved in ADAM17 activity regulation.


Scientific Reports | 2016

Oligomerization as a strategy for cold adaptation: Structure and dynamics of the GH1 β-glucosidase from Exiguobacterium antarcticum B7

Letícia Maria Zanphorlin; Priscila Oliveira de Giuseppe; Rodrigo Vargas Honorato; Celisa C. C. Tonoli; Juliana Fattori; Elaine Crespim; Paulo Sergio Lopes de Oliveira; Roberto Ruller; Mario Tyago Murakami

Psychrophilic enzymes evolved from a plethora of structural scaffolds via multiple molecular pathways. Elucidating their adaptive strategies is instrumental to understand how life can thrive in cold ecosystems and to tailor enzymes for biotechnological applications at low temperatures. In this work, we used X-ray crystallography, in solution studies and molecular dynamics simulations to reveal the structural basis for cold adaptation of the GH1 β-glucosidase from Exiguobacterium antarcticum B7. We discovered that the selective pressure of low temperatures favored mutations that redesigned the protein surface, reduced the number of salt bridges, exposed more hydrophobic regions to the solvent and gave rise to a tetrameric arrangement not found in mesophilic and thermophilic homologues. As a result, some solvent-exposed regions became more flexible in the cold-adapted tetramer, likely contributing to enhance enzymatic activity at cold environments. The tetramer stabilizes the native conformation of the enzyme, leading to a 10-fold higher activity compared to the disassembled monomers. According to phylogenetic analysis, diverse adaptive strategies to cold environments emerged in the GH1 family, being tetramerization an alternative, not a rule. These findings reveal a novel strategy for enzyme cold adaptation and provide a framework for the semi-rational engineering of β-glucosidases aiming at cold industrial processes.


Journal of Biological Chemistry | 2013

Structural insights into functional overlapping and differentiation among myosin V motors.

Andrey Fabricio Ziem Nascimento; Daniel Maragno Trindade; Celisa C. C. Tonoli; Priscila Oliveira de Giuseppe; Leandro Henrique de Paula Assis; Rodrigo Vargas Honorato; Paulo S. L. de Oliveira; P. Mahajan; N. Burgess-Brown; Frank von Delft; Roy E. Larson; Mario Tyago Murakami

Background: MyoVs are molecular motors widely distributed in eukaryotic cells responsible for membrane trafficking and intracellular transport. Results: The cargo-binding domain from human MyoV paralogs was structurally and biophysically characterized. Conclusion: We identified singular structural changes and molecular events conferring functional differentiation and modulating cargo binding. Significance: This work provides structural insights into cargo recognition and regulatory mechanisms in MyoVs. Myosin V (MyoV) motors have been implicated in the intracellular transport of diverse cargoes including vesicles, organelles, RNA-protein complexes, and regulatory proteins. Here, we have solved the cargo-binding domain (CBD) structures of the three human MyoV paralogs (Va, Vb, and Vc), revealing subtle structural changes that drive functional differentiation and a novel redox mechanism controlling the CBD dimerization process, which is unique for the MyoVc subclass. Moreover, the cargo- and motor-binding sites were structurally assigned, indicating the conservation of residues involved in the recognition of adaptors for peroxisome transport and providing high resolution insights into motor domain inhibition by CBD. These results contribute to understanding the structural requirements for cargo transport, autoinhibition, and regulatory mechanisms in myosin V motors.


Journal of Biological Chemistry | 2014

Mechanistic strategies for catalysis adopted by evolutionary distinct family 43 arabinanases.

Camila R. Santos; Carla Cristina Polo; Maria C. M. F. Costa; Andrey Fabricio Ziem Nascimento; Andreia Navarro Meza; Junio Cota; Zaira B. Hoffmam; Rodrigo Vargas Honorato; Paulo Sergio Lopes de Oliveira; Gustavo H. Goldman; Harry J. Gilbert; Rolf A. Prade; Roberto Ruller; Fabio M. Squina; Dominic W. S. Wong; Mario Tyago Murakami

Background: Arabinanases are key enzymes involved in hemicellulose degradation. Results: Crystallographic, mutational, and biochemical assays of three arabinanases reveal the molecular mechanisms governing their catalysis and activation. Conclusion: Accessory domain and metal ion are essential for catalysis. Structural adaptations in the catalytic interface confer unique action modes to ruminal arabinanases. Significance: This work provides new molecular strategies for arabinan hydrolysis. Arabinanases (ABNs, EC 3.2.1.99) are promising catalysts for environmentally friendly biomass conversion into energy and chemicals. These enzymes catalyze the hydrolysis of the α-1,5-linked l-arabinofuranoside backbone of plant cell wall arabinans releasing arabino-oligosaccharides and arabinose, the second most abundant pentose in nature. In this work, new findings about the molecular mechanisms governing activation, functional differentiation, and catalysis of GH43 ABNs are presented. Biophysical, mutational, and biochemical studies with the hyperthermostable two-domain endo-acting ABN from Thermotoga petrophila (TpABN) revealed how some GH43 ABNs are activated by calcium ions via hyperpolarization of the catalytically relevant histidine and the importance of the ancillary domain for catalysis and conformational stability. On the other hand, the two GH43 ABNs from rumen metagenome, ARN2 and ARN3, presented a calcium-independent mechanism in which sodium is the most likely substituent for calcium ions. The crystal structure of the two-domain endo-acting ARN2 showed that its ability to efficiently degrade branched substrates is due to a larger catalytic interface with higher accessibility than that observed in other ABNs with preference for linear arabinan. Moreover, crystallographic characterization of the single-domain exo-acting ARN3 indicated that its cleavage pattern producing arabinose is associated with the chemical recognition of the reducing end of the substrate imposed by steric impediments at the aglycone-binding site. By structure-guided rational design, ARN3 was converted into a classical endo enzyme, confirming the role of the extended Arg203–Ala230 loop in determining its action mode. These results reveal novel molecular aspects concerning the functioning of GH43 ABNs and provide new strategies for arabinan degradation.


Journal of Biological Chemistry | 2014

Molecular mechanisms associated with xylan degradation by xanthomonas plant pathogens.

Camila R. Santos; Zaira B. Hoffmam; Vanesa Peixoto de Matos Martins; Leticia Maria Zanphorlin; Leandro Henrique de Paula Assis; Rodrigo Vargas Honorato; Paulo Sergio Lopes de Oliveira; Roberto Ruller; Mario Tyago Murakami

Background: The xylanolytic activity is important for adaptation of Xanthomonas phytopathogen to the phyllosphere. Results: XynB is a very efficient endo-xylanase activated by calcium ion, and XynA is a dimeric exo-oligoxylanase. Conclusion: XynB degrades xylan, releasing xylooligosaccharides that are substrate for XynA. Significance: This work elucidated the structural basis for the function of the xylanolytic enzymes from Xanthomonas. Xanthomonas pathogens attack a variety of economically relevant plants, and their xylan CUT system (carbohydrate utilization with TonB-dependent outer membrane transporter system) contains two major xylanase-related genes, xynA and xynB, which influence biofilm formation and virulence by molecular mechanisms that are still elusive. Herein, we demonstrated that XynA is a rare reducing end xylose-releasing exo-oligoxylanase and not an endo-β-1,4-xylanase as predicted. Structural analysis revealed that an insertion in the β7-α7 loop induces dimerization and promotes a physical barrier at the +2 subsite conferring this unique mode of action within the GH10 family. A single mutation that impaired dimerization became XynA active against xylan, and high endolytic activity was achieved when this loop was tailored to match a canonical sequence of endo-β-1,4-xylanases, supporting our mechanistic model. On the other hand, the divergent XynB proved to be a classical endo-β-1,4-xylanase, despite the low sequence similarity to characterized GH10 xylanases. Interestingly, this enzyme contains a calcium ion bound nearby to the glycone-binding region, which is required for catalytic activity and structural stability. These results shed light on the molecular basis for xylan degradation by Xanthomonas and suggest how these enzymes synergistically assist infection and pathogenesis. Our findings indicate that XynB contributes to breach the plant cell wall barrier, providing nutrients and facilitating the translocation of effector molecules, whereas the exo-oligoxylanase XynA possibly participates in the suppression of oligosaccharide-induced immune responses.


Scientific Reports | 2017

The Molecular Motor Myosin Va Interacts With The Cilia-centrosomal Protein Rpgrip1l

L. H. P. Assis; R. M. P. Silva-Junior; L. G. Dolce; M. R. Alborghetti; Rodrigo Vargas Honorato; A. F. Z. Nascimento; T. D. Melo-Hanchuk; Daniel Maragno Trindade; Celisa C. C. Tonoli; C. T. Santos; Paulo Sergio Lopes de Oliveira; R. E. Larson; J. Kobarg; E. M. Espreafico; P. O. Giuseppe; Mario Tyago Murakami

Myosin Va (MyoVa) is an actin-based molecular motor abundantly found at the centrosome. However, the role of MyoVa at this organelle has been elusive due to the lack of evidence on interacting partners or functional data. Herein, we combined yeast two-hybrid screen, biochemical studies and cellular assays to demonstrate that MyoVa interacts with RPGRIP1L, a cilia-centrosomal protein that controls ciliary signaling and positioning. MyoVa binds to the C2 domains of RPGRIP1L via residues located near or in the Rab11a-binding site, a conserved site in the globular tail domain (GTD) from class V myosins. According to proximity ligation assays, MyoVa and RPGRIP1L can interact near the cilium base in ciliated RPE cells. Furthermore, we showed that RPE cells expressing dominant-negative constructs of MyoVa are mostly unciliated, providing the first experimental evidence about a possible link between this molecular motor and cilia-related processes.


Molecules | 2015

Kinase inhibitor profile for human nek1, nek6, and nek7 and analysis of the structural basis for inhibitor specificity.

Eduardo Cruz Moraes; Gabriela Vaz Meirelles; Rodrigo Vargas Honorato; Tatiana de Arruda Campos Brasil de Souza; Edmarcia Elisa de Souza; Mario Tyago Murakami; Paulo Sergio Lopes de Oliveira; Jörg Kobarg

Human Neks are a conserved protein kinase family related to cell cycle progression and cell division and are considered potential drug targets for the treatment of cancer and other pathologies. We screened the activation loop mutant kinases hNek1 and hNek2, wild-type hNek7, and five hNek6 variants in different activation/phosphorylation statesand compared them against 85 compounds using thermal shift denaturation. We identified three compounds with significant Tm shifts: JNK Inhibitor II for hNek1(Δ262-1258)-(T162A), Isogranulatimide for hNek6(S206A), andGSK-3 Inhibitor XIII for hNek7wt. Each one of these compounds was also validated by reducing the kinases activity by at least 25%. The binding sites for these compounds were identified by in silico docking at the ATP-binding site of the respective hNeks. Potential inhibitors were first screened by thermal shift assays, had their efficiency tested by a kinase assay, and were finally analyzed by molecular docking. Our findings corroborate the idea of ATP-competitive inhibition for hNek1 and hNek6 and suggest a novel non-competitive inhibition for hNek7 in regard to GSK-3 Inhibitor XIII. Our results demonstrate that our approach is useful for finding promising general and specific hNekscandidate inhibitors, which may also function as scaffolds to design more potent and selective inhibitors.


PLOS ONE | 2013

Structural Analysis of Intermolecular Interactions in the Kinesin Adaptor Complex Fasciculation and Elongation Protein Zeta 1/ Short Coiled-Coil Protein (FEZ1/SCOCO)

Marcos R. Alborghetti; Ariane da Silva Furlan; Júlio César da Silva; Mauricio Luis Sforça; Rodrigo Vargas Honorato; Daniela C. Granato; Deivid Lucas dos Santos Migueleti; Jorge Luiz Neves; Paulo Sergio Lopes de Oliveira; Adriana Franco Paes-Leme; Ana Carolina de Mattos Zeri; Iris L. Torriani; Jörg Kobarg

Cytoskeleton and protein trafficking processes, including vesicle transport to synapses, are key processes in neuronal differentiation and axon outgrowth. The human protein FEZ1 (fasciculation and elongation protein zeta 1 / UNC-76, in C. elegans), SCOCO (short coiled-coil protein / UNC-69) and kinesins (e.g. kinesin heavy chain / UNC116) are involved in these processes. Exploiting the feature of FEZ1 protein as a bivalent adapter of transport mediated by kinesins and FEZ1 protein interaction with SCOCO (proteins involved in the same path of axonal growth), we investigated the structural aspects of intermolecular interactions involved in this complex formation by NMR (Nuclear Magnetic Resonance), cross-linking coupled with mass spectrometry (MS), SAXS (Small Angle X-ray Scattering) and molecular modelling. The topology of homodimerization was accessed through NMR (Nuclear Magnetic Resonance) studies of the region involved in this process, corresponding to FEZ1 (92-194). Through studies involving the protein in its monomeric configuration (reduced) and dimeric state, we propose that homodimerization occurs with FEZ1 chains oriented in an anti-parallel topology. We demonstrate that the interaction interface of FEZ1 and SCOCO defined by MS and computational modelling is in accordance with that previously demonstrated for UNC-76 and UNC-69. SAXS and literature data support a heterotetrameric complex model. These data provide details about the interaction interfaces probably involved in the transport machinery assembly and open perspectives to understand and interfere in this assembly and its involvement in neuronal differentiation and axon outgrowth.

Collaboration


Dive into the Rodrigo Vargas Honorato's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Camila R. Santos

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Fabio C. Gozzo

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Roberto Ruller

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabio M. Squina

State University of Campinas

View shared research outputs
Researchain Logo
Decentralizing Knowledge