Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger A. Davis is active.

Publication


Featured researches published by Roger A. Davis.


Biochimica et Biophysica Acta | 1999

Cell and molecular biology of the assembly and secretion of apolipoprotein B-containing lipoproteins by the liver

Roger A. Davis

Triglycerides are one of the most efficient storage forms of free energy. Because of their insolubility in biological fluids, their transport between cells and tissues requires that they be assembled into lipoprotein particles. Genetic disruption of the lipoprotein assembly/secretion pathway leads to several human disorders associated with malnutrition and developmental abnormalities. In contrast, patients displaying inappropriately high rates of lipoprotein production display increased risk for the development of atherosclerotic cardiovascular disease. Insights provided by diverse experimental approaches describe an elegant biological adaptation of basic chemical interactions required to overcome the thermodynamic dilemma of producing a stable emulsion vehicle for the transport and tissue targeting of triglycerides. The mammalian lipoprotein assembly/secretion pathway shows an absolute requirement for: (1) the unique amphipathic protein: apolipoprotein B, in a form that is sufficiently large to assemble a lipoprotein particle containing a neutral lipid core; and, (2) a lipid transfer protein (microsomal triglyceride transfer protein-MTP). In the endoplasmic reticulum apolipoprotein B has two distinct metabolic fates: (1) entrance into the lipoprotein assembly pathway within the lumen of the endoplasmic reticulum; or, (2) degradation in the cytoplasm by the ubiquitin-dependent proteasome. The destiny of apolipoprotein B is determined by the relative availability of individual lipids and level of expression of MTP. The dynamically varied expression of cholesterol-7alpha-hydroxylase indirectly influences the rate of lipid biosynthesis and the assembly and secretion lipoprotein particles by the liver.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Txnip balances metabolic and growth signaling via PTEN disulfide reduction.

Simon T. Hui; Allen M. Andres; Amber K. Miller; Nathanael J. Spann; Douglas W. Potter; Noah M. Post; Amelia Z. Chen; Sowbarnika Sachithanantham; Dae Young Jung; Jason K. Kim; Roger A. Davis

Thioredoxin-interacting protein (Txnip) inhibits thioredoxin NADPH-dependent reduction of protein disulfides. Total Txnip knockout (TKO) mice adapted inappropriately to prolonged fasting by shifting fuel dependence of skeletal muscle and heart from fat and ketone bodies to glucose. TKO mice exhibited increased Akt signaling, insulin sensitivity, and glycolysis in oxidative tissues (skeletal muscle and hearts) but not in lipogenic tissues (liver and adipose tissue). The selective activation of Akt in skeletal muscle and hearts was associated with impaired mitochondrial fuel oxidation and the accumulation of oxidized (inactive) PTEN, whose activity depends on reduction of two critical cysteine residues. Whereas muscle- and heart-specific Txnip knockout mice recapitulated the metabolic phenotype exhibited by TKO mice, liver-specific Txnip knockout mice were similar to WT mice. Embryonic fibroblasts derived from knockout mice also accumulated oxidized (inactive) PTEN and had elevated Akt phosphorylation. In addition, they had faster growth rates and increased dependence on anaerobic glycolysis due to impaired mitochondrial fuel oxidation, and they were resistant to doxorubicin-facilitated respiration-dependent apoptosis. In the absence of Txnip, oxidative inactivation of PTEN and subsequent activation of Akt attenuated mitochondrial respiration, resulting in the accumulation of NADH, a competitive inhibitor of thioredoxin NADPH-reductive activation of PTEN. These findings indicate that, in nonlipogenic tissues, Txnip is required to maintain sufficient thioredoxin NADPH activity to reductively reactivate oxidized PTEN and oppose Akt downstream signaling.


The FASEB Journal | 2008

Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes

Junqin Chen; Simon T. Hui; Francesca M. Couto; Imran N. Mungrue; Dawn Belt Davis; Alan D. Attie; Aldons J. Lusis; Roger A. Davis; Anath Shalev

Pancreatic beta‐cell loss through apoptosis represents a key factor in the pathogenesis of diabetes;however, no effective approaches to block this process and preserve endogenous beta‐cell mass are currently available. To study the role of thioredoxin‐interacting protein (TXNIP), a proapoptotic beta‐cell factor we recently identified, we used HcB‐19 (TXNIP nonsense mutation) and beta‐cell‐specific TXNIP knockout (bTKO) mice. Interestingly, HcB‐19 mice demonstrate increased adiposity, but have lower blood glucose levels and increased pancreatic beta‐cell mass (as assessed by morphometry). Moreover, HcB‐19 mice are resistant to streptozotocin‐induced diabetes. When intercrossed with obese, insulin‐resistant, and diabetic mice, double‐mutant BTBRlepob/obtxniphcb/hcb are even more obese, but are protected against diabetes and beta‐cell apoptosis, resulting in a 3‐fold increase in beta‐cell mass. Beta‐cell‐specific TXNIP deletion also enhanced beta‐cell mass (P< 0.005) and protected against diabetes, and terminal deoxynucleotidyl transferase‐mediated nick end labeling (TUNEL) revealed a ~50‐fold reduction in beta‐cell apoptosis in streptozotocin‐treated bTKO mice. We further discovered that TXNIP deficiency induces Akt/Bcl‐xL signaling and inhibits mitochondrial beta‐cell death, suggesting that these mechanisms may mediate the beta‐cell protective effects of TXNIP deficiency. These results suggest that lowering beta‐cell TXNIP expression could serve as a novel strategy for the treatment of type 1 and type 2 diabetes by promoting endogenous beta‐cell survival.—Chen, J., Hui, S. T., Couto, F. M., Mungrue, I. N., Davis, D. B., Attie, A. D., Lusis, A. J., Davis, R. A., Shalev, A. Thioredoxin‐interacting protein deficiency induces Akt/ Bcl‐xL signaling and pancreatic beta‐cell mass and protects against diabetes. FASEB J. 22, 3581–3594 (2008)


Journal of Biological Chemistry | 2000

Bile Acid Induction of Cytokine Expression by Macrophages Correlates with Repression of Hepatic Cholesterol 7α-Hydroxylase

Jon H. Miyake; Shui-Long Wang; Roger A. Davis

In the studies reported herein, we show that two complementary experimental models: inbred strains of mice (i.e. C57BL/6 and C3H/HeJ), and a differentiated line of rat hepatoma cells (i.e. L35 cells), require the activation of cytokines by monocyte/macrophages to display bile acid negative feedback repression of cholesterol 7α-hydroxylase (CYP7A1). Feeding a bile acid-containing atherogenic diet for 3 weeks to C57BL/6 mice led to a 70% reduction in the expression of hepatic CYP7A1 mRNA, whereas no reduction was observed in C3H/HeJ mice. The strain-specific response to repression of CYP7A1 paralleled the activation of hepatic cytokine expression. Studies using cultured THP-1 monocyte/macrophages showed that the hydrophobic bile acid chenodeoxycholate, a well established potent repressor of CYP7A1, induced the expression of mRNAs encoding interleukin 1 (IL-1) and tumor necrosis factor α (TNFα). In contrast, the hydrophilic bile acid ursodeoxycholate, which does not repress CYP7A1, did not induce cytokine mRNA expression by THP-1 cells. Chenodeoxycholate activation of cytokines by THP-1 cells was blocked by the peroxisome proliferator-activated receptor γ agonist rosiglitazone. The expression of cytokines (e.g. IL-1 and TNFα) by THP-1 cells paralleled with the ability of these cells to produce conditioned medium that when added to rat L35 hepatoma cells, repressed CYP7A1. Moreover, rosiglitazone, which blocks cytokine activation by macrophages, also blocked the repression of CYP7A1 normally exhibited by C57BL/6 mice fed the bile acid-containing atherogenic diet. The combined data indicate that the activation of cytokines may mediate CYP7A1 repression caused by feeding mice an atherogenic diet containing bile acids.


Molecular BioSystems | 2007

The physiological and molecular regulation of lipoprotein assembly and secretion

Daniel A. Blasiole; Roger A. Davis; Alan D. Attie

Triglycerides are insoluble in water and yet are transported at milligram per millilitre concentrations in the bloodstream. This is made possible by the ability of the liver and intestine to assemble lipid-protein emulsions (i.e. lipoproteins), which transport hydrophobic molecules. The assembly of triglyceride-rich lipoproteins requires the coordination of protein and lipid synthesis, which occurs on the cytoplasmic surface of the endoplasmic reticulum (ER), and their concerted assembly and translocation into the luminal ER secretory pathway as nascent lipoprotein particles. The availability of lipid substrate for triglyceride production and the machinery for lipoprotein assembly are highly sensitive to nutritional, hormonal, and genetic modulation. Disorders in lipid metabolism or an imbalance between lipogenesis and lipoprotein assembly can lead to hyperlipidemia and/or hepatic steatosis. We selectively review recently-identified machinery, such as transcription factors and nuclear hormone receptors, which provide new clues to the regulation of lipoprotein secretion.


Journal of Biological Chemistry | 1995

In HepG2 cells, translocation, not degradation, determines the fate of the de novo synthesized apolipoprotein B.

Julie A. Bonnardel; Roger A. Davis

Previous studies show that translocation and degradation of apolipoprotein B (apoB), two processes occurring on or within the endoplasmic reticulum, determine how much de novo synthesized apoB is secreted. We determined which of these processes regulates the intracellular fate of apoB by examining whether degradation determines how much apoB is translocated or if translocation determines how much apoB is degraded. HepG2 cells, treated with the cysteine active site protease inhibitor ALLN, previously shown to block the degradation of translocation-arrested apoB in Chinese hamster ovary cells (Du, E., Kurth, J., Wang, S.-L., Humiston, P., and Davis, R. A.(1994) J. Biol. Chem. 269, 24169-24176), showed a 10-fold increase in the accumulation of de novo synthesized [S]methionine-labeled apoB. The majority (80%) of the apoB accumulated in response to ALLN was in the microsomal fraction. In contrast, ALLN did not effect apoB secretion. Since ALLN did not effect the intracellular accumulation of [S]methionine-labeled albumin and other proteins (trichloroacetic acid-precipitable [S]methionine-labeled proteins), its effect on apoB was specific. Pulse-chase studies showed that ALLN dramatically reduced the first-order rate of removal of [S]methionine-labeled apoB from the cell but did not effect its rate of secretion. The finding that ALLN caused the intracellular accumulation of incompletely translated chains of apoB suggests that at least some of the degradation occurs at the ribosomal level. Moreover, 85% of the apoB that accumulated in isolated microsomes in response to ALLN was accessible to exogenous trypsin, indicating this pool of apoB was incompletely translocated. The combined data suggest that translocation, not degradation, determines the intracellular fate of de novo synthesized apoB.


Journal of Biological Chemistry | 1997

Coordinate Regulation of Lipogenesis, the Assembly and Secretion of Apolipoprotein B-containing Lipoproteins by Sterol Response Element Binding Protein 1

Shui-Long Wang; Emma Z. Du; Martin Td; Roger A. Davis

Stable plasmid-driven expression of the liver-specific gene product cholesterol 7α-hydroxylase (7α-hydroxylase) was used to alter the cellular content of transcriptionally active sterol response element binding protein 1 (SREBP1). As a result of stable expression of 7α-hydroxylase, individual single cell clones expressed varying amounts of mature SREBP1 protein. These single cell clones provided an opportunity to identify SREBP1-regulated genes that may influence the assembly and secretion of apoB-containing lipoproteins. Our results show that in McArdle rat hepatoma cells, which normally do not express 7α-hydroxylase, plasmid-driven expression of 7α-hydroxylase results in the following: 1) a linear relationship between (i) the cellular content of mature SREBP1 and 7α-hydroxylase protein, (ii) the relative expression of 7α-hydroxylase mRNA and the mRNA’s encoding the enzymes regulating fatty acid, i.e. acetyl-CoA carboxylase and sterol synthesis, i.e. HMG-CoA reductase, (iii) the relative expression of 7α-hydroxylase mRNA and microsomal triglyceride transfer protein mRNA, a gene product that is essential for the assembly and secretion of apoB-containing lipoproteins; 2) increased synthesis of all lipoprotein lipids (cholesterol, cholesterol esters, triglycerides, and phospholipids); and 3) increased secretion of apoB100 without any change in apoB mRNA. Cells expressing 7α-hydroxylase contained significantly less cholesterol (both free and esterified). The increased cellular content of mature SREBP1 and increased secretion of apoB100 were concomitantly reversed by 25-hydroxycholesterol, suggesting that the content of mature SREBP1, known to be decreased by 25-hydroxycholesterol, mediates the changes in the lipoprotein assembly and secretion pathway that are caused by 7α-hydroxylase. These data suggest that several steps in the assembly and secretion of apoB-containing lipoproteins by McArdle hepatoma cells may be coordinately linked through the cellular content of mature SREBP1.


Journal of Biological Chemistry | 2006

Coordinate Transcriptional Repression of Liver Fatty Acid-binding Protein and Microsomal Triglyceride Transfer Protein Blocks Hepatic Very Low Density Lipoprotein Secretion without Hepatosteatosis

Nathanael J. Spann; Sohye Kang; Andrew C. Li; Amelia Z. Chen; Elizabeth P. Newberry; Nicholas O. Davidson; Simon T. Hui; Roger A. Davis

Unlike the livers of humans and mice, and most hepatoma cells, which accumulate triglycerides when treated with microsomal triglyceride transfer protein (MTP) inhibitors, L35 rat hepatoma cells do not express MTP and cannot secrete very low density lipoprotein (VLDL), yet they do not accumulate triglyceride. In these studies we show that transcriptional co-repression of the two lipid transfer proteins, liver fatty acid-binding protein (L-FABP) and MTP, which cooperatively shunt fatty acids into de novo synthesized glycerolipids and the transfer of lipids into VLDL, respectively, act together to maintain hepatic lipid homeostasis. FAO rat hepatoma cells express L-FABP and MTP and demonstrate the ability to assemble and secrete VLDL. In contrast, L35 cells, derived as a single cell clone from FAO cells, do not express L-FABP or MTP nor do they assemble and secrete VLDL. We used these hepatoma cells to elucidate how a conserved DR1 promoter element present in the promoters of L-FABP and MTP affects transcription, expression, and VLDL production. In FAO cells, the DR1 elements of both L-FABP and MTP promoters are occupied by peroxisome proliferator-activated receptor α-retinoid X receptor α (RXRα), with which PGC-1β activates transcription. In contrast, in L35 cells the DR1 elements of both L-FABP and MTP promoters are occupied by chicken ovalbumin upstream promoter transcription factor II, and transcription is diminished. The combined findings indicate that peroxisome proliferator-activated receptor α-RXRα and PGC-1β coordinately up-regulate L-FABP and MTP expression, by competing with chicken ovalbumin upstream promoter transcription factor II for the DR1 sites in the proximal promoters of each gene. Additional studies show that ablation of L-FABP prevents hepatic steatosis caused by treating mice with an MTP inhibitor. Our findings show that reducing both L-FABP and MTP is an effective means to reduce VLDL secretion without causing hepatic steatosis.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2005

Bile Acids Decrease Hepatic Paraoxonase 1 Expression and Plasma High-Density Lipoprotein Levels Via FXR-Mediated Signaling of FGFR4

Alejandra Gutierrez; Eric P. Ratliff; Allen M. Andres; Xinqiang Huang; Wallace L. McKeehan; Roger A. Davis

Objective—The purpose of this research was to determine how dietary bile acids repress hepatic expression of paraoxonase 1 (PON1). Methods and Results—C57BL/6 mice and C3H/HeJ mice, having different susceptibilities to atherosclerosis, were fed a chow diet and an atherogenic diet containing taurocholate. Compared with the more atherosclerosis–susceptible C57BL/6 mice, C3H/HeJ mice display resistance to dietary bile acid repression of hepatic PON1 mRNA and decreased high-density lipoprotein cholesterol. Whereas knockout of toll receptor 4 did not affect response to taurocholate, deletion of either FXR or FGFR4 blocked taurocholate repression of PON1 and CYP7A1. FGF19, an activator of FGFR4 expressed in human ileum, decreased expression of both PON1 and CYP7A1 expression by human hepatoma cells. In all of the mice studied, dietary taurocholate increased ileal expression of FGF15, a FXR-inducible murine homologue of human FGF19. Conclusions—Hepatic PON1 and CYP7A1 mRNA expression is repressed by bile acids via FXR-mediated induction of FGF15. Thus, the inability of C3H/HeJ mice to display taurocholate repression of PON1 and CYP7A1 mRNAs was not because of a lack of induction of FGF15 but rather signaling events distal to FGF15-FGFR4 association.


Journal of Biological Chemistry | 2001

Increased Production of Apolipoprotein B-containing Lipoproteins in the Absence of Hyperlipidemia in Transgenic Mice Expressing Cholesterol 7α-Hydroxylase

Jon H. Miyake; Xuan Dao T. Doung; William Strauss; Gina L. Moore; Lawrence W. Castellani; Linda K. Curtiss; John M. Taylor; Roger A. Davis

The finding that expression of a cholesterol 7α-hydroxylase (CYP7A1) transgene in cultured rat hepatoma cells caused a coordinate increase in lipogenesis and secretion of apoB-containing lipoproteins led to the hypothesis that hepatic production of apoB-containing lipoproteins may be linked to the expression of CYP7A1 (Wang, S.-L., Du, E., Martin, T. D., and Davis, R. A. (1997) J. Biol. Chem. 272, 19351–19358). To examine this hypothesis in vivo, a transgene encoding CYP7A1 driven by the constitutive liver-specific enhancer of the human apoE gene was expressed in C56BL/6 mice. The expression of CYP7A1 mRNA (20-fold), protein (∼10-fold), and enzyme activity (5-fold) was markedly increased in transgenic mice compared with non-transgenic littermates. The bile acid pool of CYP7A1 transgenic mice was doubled mainly due to increased hydrophobic dihydroxy bile acids. In CYP7A1 transgenic mice, livers contained ∼3-fold more sterol response element-binding protein-2 mRNA. Hepatic expression of mRNAs encoding lipogenic enzymes (i.e. fatty-acid synthase, acetyl-CoA carboxylase, stearoyl-CoA desaturase, squalene synthase, farnesyl-pyrophosphate synthase, 3-hydroxy-3-methylglutaryl-CoA reductase, and low density lipoprotein receptor) as well as microsomal triglyceride transfer protein were elevated ∼3–5-fold in transgenic mice. CYP7A1 transgenic mice also displayed a >2-fold increase in hepatic production and secretion of triglyceride-rich apoB-containing lipoproteins. Despite the increased hepatic secretion of apoB-containing lipoproteins in CYP7A1 mice, plasma levels of triglycerides and cholesterol were not significantly increased. These data suggest that the 5-fold increased expression of the low density lipoprotein receptor displayed by the livers of CYP7A1 transgenic mice was sufficient to compensate for the 2-fold increase production of apoB-containing lipoproteins. These findings emphasize the important homeostatic role that CYP7A1 plays in balancing the anabolic lipoprotein assembly/secretion pathway with the cholesterol catabolic bile acid synthetic pathway.

Collaboration


Dive into the Roger A. Davis's collaboration.

Top Co-Authors

Avatar

John D. Trawick

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Jon H. Miyake

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Gina L. Moore

University of California

View shared research outputs
Top Co-Authors

Avatar

Shui-Long Wang

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Alan D. Attie

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Emma Z. Du

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sohye Kang

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

To Y. Hui

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge