Roger F. Woods
Queen's University Belfast
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger F. Woods.
Archive | 2008
Roger F. Woods; John McAllister; Richard Turner; Ying Yi; Gaye Lightbody
Field programmable gate arrays (FPGAs) are an increasingly popular technology for implementing digital signal processing (DSP) systems. By allowing designers to create circuit architectures developed for the specific applications, high levels of performance can be achieved for many DSP applications providing considerable improvements over conventional microprocessor and dedicated DSP processor solutions. The book addresses the key issue in this process specifically, the methods and tools needed for the design, optimization and implementation of DSP systems in programmable FPGA hardware. It presents a review of the leading-edge techniques in this field, analyzing advanced DSP-based design flows for both signal flow graph- (SFG-) based and dataflow-based implementation, system on chip (SoC) aspects, and future trends and challenges for FPGAs. The automation of the techniques for component architectural synthesis, computational models, and the reduction of energy consumption to help improve FPGA performance, are given in detail. Written from a system level design perspective and with a DSP focus, the authors present many practical application examples of complex DSP implementation, involving: high-performance computing e.g. matrix operations such as matrix multiplication; high-speed filtering including finite impulse response (FIR) filters and wave digital filters (WDFs); adaptive filtering e.g. recursive least squares (RLS) filtering; transforms such as the fast Fourier transform (FFT). FPGA-based Implementation of Signal Processing Systems is an important reference for practising engineers and researchers working on the design and development of DSP systems for radio, telecommunication, information, audio-visual and security applications. Senior level electrical and computer engineering graduates taking courses in signal processing or digital signal processing shall also find this volume of interest.
Archive | 2006
Andreas Koch; Ram K. Krishnamurthy; John McAllister; Roger F. Woods; Tarek A. El-Ghazawi
Clustering of a large number of data points is a computational demanding task that often needs the be accelerated in order to be useful in practice. The focus of this work is on the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm, which is one of the state-of-the-art clustering algorithms, targeting its acceleration using an FPGA device. The paper presents a novel, optimised and scalable architecture that takes advantage of the internal memory structure of modern FPGAs in order to deliver a high performance clustering system. Results show that the developed system can obtain average speed-ups of 32x in real-world tests and 202x in synthetic tests when compared to state-of-the-art software counterparts.
signal processing systems | 1997
David W. Trainor; Jean-Paul Heron; Roger F. Woods
This paper presents a novel FPGA implementation of a two dimensional (8/spl times/8) point Discrete Cosine Transform. It is shown how the development of a suitable architectural style can produce high quality circuit designs for a specific technology, in this case the Xilinx XC6200 series of FPGA. Distributed arithmetic and exploitation of parallelism and pipelining are used to produce a DCT implementation on a single FPGA that operates at 25 frames per second with VGA resolution which is the equivalent of 2 million multiplications or additions per second.
signal processing systems | 1989
S.C. Knowles; John G. McWhirter; Roger F. Woods; John V. McCanny
Several novel systolic architectures for implementing densely pipelined bit parallel IIR filter sections are presented. The fundamental problem of latency in the feedback loop is overcome by employing redundant arithmetic in combination with bit-level feedback, allowing a basic first-order section to achieve a wordlength-independent latency of only two clock cycles. This is extended to produce a building block from which higher order sections can be constructed. The architecture is then refined by combining the use of both conventional and redundant arithmetic, resulting in two new structures offering substantial hardware savings over the original design. In contrast to alternative techniques, bit-level pipelinability is achieved with no net cost in hardware.
signal processing systems | 2005
Ying Yi; Roger F. Woods; Lok-Kee Ting; Colin F. N. Cowan
A variation of the least means squares (LMS) algorithm, called the delayed LMS (DLMS) algorithm is ideally suited for highly pipelined, adaptive digital filter implementations. In this paper, we present an efficient method to determine the delays in the DLMS filter. Furthermore, in order to achieve fully pipelined circuit architectures for FPGA implementation, we transfer these delays using retiming. The method has been used to derive a series of retimed delayed LMS (RDLMS) architectures, which allow a 66.7% reduction in delays and 5 times faster convergence time thereby giving superior performance in terms of throughput rate when compared to previous work. Three circuit architectures and three hardware shared versions are presented which have been implemented using the Virtex-II FPGA technology resulting in a throughput rate of 182 Msample/s.
IEEE Access | 2016
Junqing Zhang; Trung Quang Duong; Alan Marshall; Roger F. Woods
Key generation from the randomness of wireless channels is a promising alternative to public key cryptography for the establishment of cryptographic keys between any two users. This paper reviews the current techniques for wireless key generation. The principles, performance metrics and key generation procedure are comprehensively surveyed. Methods for optimizing the performance of key generation are also discussed. Key generation applications in various environments are then introduced along with the challenges of applying the approach in each scenario. The paper concludes with some suggestions for future studies.
IEEE Transactions on Very Large Scale Integration Systems | 2004
Richard Turner; Roger F. Woods
A novel design technique for deriving highly efficient multipliers that operate on a limited range of multiplier values is presented. Using the technique, Xilinx Virtex field programmable gate array (FPGA) implementations for a discrete cosine transform and poly-phase filter were derived with area reductions of 31%-70% and speed increases of 5%-35% when compared to designs using general-purpose multipliers. The technique gives superior results over other fixed coefficient methods and is applicable to a range of FPGA technologies.
IEEE Transactions on Very Large Scale Integration Systems | 2003
Gaye Lightbody; Roger F. Woods; Richard L. Walke
The availability of an intellectual property core for recursive least squares (RLS) filtering could enable the RLS algorithm to replace the least mean squares algorithm in a wide range of applications. The goal of this study is to develop a parameterizable generic architecture for RLS filtering in the form of a hardware description language (HDL) description, which can be used to generate highly efficient silicon layout. The key issue is to develop a family of circuit architectures that are 100% efficient and locally connected. This paper presents a generic mapping for RLS filtering and circuit architectures that can be mapped to a range of application requirements. It outlines the transition from array to architecture covering detailed design issues such as timing and control generation. The result is a family of QR designs, which are parameterized in terms of architecture size, wordlength, performance, and arithmetic processor timing.
IEEE Design & Test of Computers | 1998
Roger F. Woods; David W. Trainor; Jean-Paul Heron
This implementation of a two-dimensional discrete cosine transform demonstrates the development of a suitable architectural style for a specific technology-in this case, the Xilinx XC6200 FPGA series. The design exploits distributed arithmetic, parallelism, and pipelining to achieve high-performance custom-computing implementation.
signal processing systems | 2000
Gaye Lightbody; Richard L. Walke; Roger F. Woods; John V. McCanny
This paper presents the design of a novel single chip adaptive beamformer capable of performing 50 Gflops, (Giga-floating-point operations/second). The core processor is a QR array implemented on a fully efficient linear systolic architecture, derived using a mapping that allows individual processors for boundary and internal cell operations. In addition, the paper highlights a number of rapid design techniques that have been used to realise this system. These include an architecture synthesis tool for quickly developing the circuit architecture and the utilisation of a library of parameterisable silicon intellectual property (IP) cores, to rapidly develop detailed silicon designs.