Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger Maurice is active.

Publication


Featured researches published by Roger Maurice.


Bioorganic & Medicinal Chemistry Letters | 1998

Peptide-based inhibitors of the hepatitis C virus serine protease

Montse Llinas-Brunet; Murray D. Bailey; Gulrez Fazal; Sylvie Goulet; Ted Halmos; Steven R. LaPlante; Roger Maurice; Martin Poirier; Marc-André Poupart; Diane Thibeault; Dominik Wernic; Daniel Lamarre

Hexapeptide DDIVPC-OH is a competitive inhibitor of the hepatitis C virus (HCV) NS3 protease complexed with NS4A cofactor peptide. This hexapeptide corresponds to the N-terminal cleavage product of an HCV dodecapeptide substrate derived from the NS5A/5B cleavage site. Structure-activity studies on Ac-DDIVPC-OH revealed that side chains of the P4, P3 and P1 residues contribute the most to binding and that the introduction of a D-amino acid at the P5 position improves potency considerably. Furthermore, there is a strong preference for cysteine at the P1 position and conservative replacements, such as serine, are not well tolerated.


Bioorganic & Medicinal Chemistry Letters | 1998

Studies on the C-terminal of hexapeptide inhibitors of the hepatitis C virus serine protease

Montse Llinas-Brunet; Murray D. Bailey; Robert Deziel; Gulrez Fazal; Vida Gorys; Sylvie Goulet; Ted Halmos; Roger Maurice; Martin Poirier; Marc-André Poupart; Jean Rancourt; Diane Thibeault; Dominik Wernic; Daniel Lamarre

Replacement of the C-terminal carboxylic acid functionality of peptide inhibitors of hepatitis C virus (HCV) NS3 protease (complexed with NS4A peptide cofactor) by activated carbonyl groups does not produce any substantial increase in potency. These latter inhibitors also inhibit a variety of other serine and cysteine proteases whereas the carboxylic acids are specific. Norvaline was identified as a chemically stable replacement for the P1 residue of Ac-DDIVPC-OH which was also compatible with activated carbonyl functionalities.


Bioorganic & Medicinal Chemistry Letters | 2000

Highly potent and selective peptide-based inhibitors of the hepatitis C virus serine protease : Towards smaller inhibitors

Montse Llinas-Brunet; Murray D. Bailey; Gulrez Fazal; Elise Ghiro; Vida Gorys; Sylvie Goulet; Ted Halmos; Roger Maurice; Martin Poirier; Marc-André Poupart; Jean Rancourt; Diane Thibeault; Dominik Wernic; Daniel Lamarre

Structure-activity studies on a hexapeptide N-terminal cleavage product of a dodecamer substrate led to the identification of very potent and highly specific inhibitors of the HCV NS3 protease/NS4A cofactor peptide complex. The largest increase in potency was accomplished by the introduction of a (4R)-naphthalen-1-yl-4-methoxy substituent to the P2 proline. N-Terminal truncation resulted in tetrapeptides containing a C-terminal carboxylic acid, which exhibited low micromolar activity against the HCV serine protease.


Journal of Virology | 2004

Sensitivity of NS3 Serine Proteases from Hepatitis C Virus Genotypes 2 and 3 to the Inhibitor BILN 2061

Diane Thibeault; Christiane Bousquet; Rock Gingras; Lisette Lagacé; Roger Maurice; Peter W. White; Daniel Lamarre

ABSTRACT Hepatitis C virus (HCV) displays a high degree of genetic variability. Six genotypes and more than 50 subtypes have been identified to date. In this report, kinetic profiles were determined for NS3 proteases of genotypes 1a, 1b, 2ac, 2b, and 3a, revealing no major differences in activity. In vitro sensitivity studies with BILN 2061 showed a decrease in affinity for proteases of genotypes 2 and 3 (Ki, 80 to 90 nM) compared to genotype 1 enzymes (Ki, 1.5 nM). To understand the reduced sensitivity of genotypes 2 and 3 to BILN 2061, active-site residues in the proximity of the inhibitor binding site were replaced in the genotype-1b enzyme with the corresponding genotype-2b or -3a residues. The replacement of five residues at positions 78, 79, 80, 122, and 132 accounted for most of the reduced sensitivity of genotype 2b, while replacement of residue 168 alone could account for the reduced sensitivity of genotype 3a. BILN 2061 remains a potent inhibitor of these non-genotype-1 NS3-NS4A proteins, with Ki values below 100 nM. This in vitro potency, in conjunction with the good pharmacokinetic data reported for humans, suggests that there is potential for BILN 2061 as an antiviral agent for individuals infected with non-genotype-1 HCV.


Journal of Biological Chemistry | 1999

Solution Structure of Substrate-based Ligands When Bound to Hepatitis C Virus NS3 Protease Domain

Steven R. LaPlante; Dale R. Cameron; Sylvain Lefebvre; George Kukolj; Roger Maurice; Diane Thibeault; Daniel Lamarre; Montse Llinas-Brunet

The interactions of the NS3 protease domain with inhibitors that are based on N-terminal cleavage products of peptide substrates were studied by NMR methods. Transferred nuclear Overhauser effect experiments showed that these inhibitors bind the protease in a well defined, extended conformation. Protease-induced line-broadening studies helped identify the segments of inhibitors which come into contact with the protease. A comparison of the NMR data of the free and protease-bound states suggests that these ligands undergo rigidification upon complexation. This work provides the first structure of an inhibitor when bound to NS3 protease and should be valuable for designing more potent inhibitors.


Antimicrobial Agents and Chemotherapy | 2012

In Vitro Resistance Profile of the Hepatitis C Virus NS3 Protease Inhibitor BI 201335

Lisette Lagacé; Peter W. White; Christiane Bousquet; Nathalie Dansereau; Florence Dô; Montse Llinas-Brunet; Martin Marquis; Marie-Josée Massariol; Roger Maurice; Catherine Spickler; Diane Thibeault; Ibtissem Triki; Songping Zhao; George Kukolj

ABSTRACT The in vitro resistance profile of BI 201335 was evaluated through selection and characterization of variants in genotype 1a (GT 1a) and genotype 1b (GT 1b) replicons. NS3 R155K and D168V were the most frequently observed resistant variants. Phenotypic characterization of the mutants revealed shifts in sensitivity specific to BI 201335 that did not alter susceptibility to alpha interferon. In contrast to macrocyclic and covalent protease inhibitors, changes at V36, T54, F43, and Q80 did not confer resistance to BI 201335.


Journal of Biological Chemistry | 2003

An NS3 Serine Protease Inhibitor Abrogates Replication of Subgenomic Hepatitis C Virus RNA

Arnim Pause; George Kukolj; Murray D. Bailey; Martine Brault; Florence Dô; Ted Halmos; Lisette Lagacé; Roger Maurice; Martin Marquis; Ginette McKercher; Charles Pellerin; Louise Pilote; Diane Thibeault; Daniel Lamarre


Journal of Biological Chemistry | 2001

In Vitro Characterization of a Purified NS2/3 Protease Variant of Hepatitis C Virus

Diane Thibeault; Roger Maurice; Louise Pilote; Daniel Lamarre; Arnim Pause


Archive | 2001

Purified active HCV NS2/3 protease

Diane Thibeault; Daniel Lamarre; Roger Maurice; Louise Pilote; Armin Pause


Hepatology | 2003

300 Sensitivity of NS3 serine proteases from various hepatitis C virus genotypes to the antiviral compound BILN 2061

Diane Thibeault; Christiane Bousquet; Rock Gingras; Lisette Lagacé; Roger Maurice; Peter W. White; Daniel Lamarre

Collaboration


Dive into the Roger Maurice's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge