Roger S. Bongers
Wageningen University and Research Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger S. Bongers.
Applied and Environmental Microbiology | 2007
Jolanda Lambert; Roger S. Bongers; Michiel Kleerebezem
ABSTRACT The classic strategy to achieve gene deletion variants is based on double-crossover integration of nonreplicating vectors into the genome. In addition, recombination systems such as Cre-lox have been used extensively, mainly for eukaryotic organisms. This study presents the construction of a Cre-lox-based system for multiple gene deletions in Lactobacillus plantarum that could be adapted for use on gram-positive bacteria. First, an effective mutagenesis vector (pNZ5319) was constructed that allows direct cloning of blunt-end PCR products representing homologous recombination target regions. Using this mutagenesis vector, double-crossover gene replacement mutants could be readily selected based on their antibiotic resistance phenotype. In the resulting mutants, the target gene is replaced by a lox66-P32-cat-lox71 cassette, where lox66 and lox71 are mutant variants of loxP and P32-cat is a chloramphenicol resistance cassette. The lox sites serve as recognition sites for the Cre enzyme, a protein that belongs to the integrase family of site-specific recombinases. Thus, transient Cre recombinase expression in double-crossover mutants leads to recombination of the lox66-P32-cat-lox71 cassette into a double-mutant loxP site, called lox72, which displays strongly reduced recognition by Cre. The effectiveness of the Cre-lox-based strategy for multiple gene deletions was demonstrated by construction of both single and double gene deletions at the melA and bsh1 loci on the chromosome of the gram-positive model organism Lactobacillus plantarum WCFS1. Furthermore, the efficiency of the Cre-lox-based system in multiple gene replacements was determined by successive mutagenesis of the genetically closely linked loci melA and lacS2 in L. plantarum WCFS1. The fact that 99.4% of the clones that were analyzed had undergone correct Cre-lox resolution emphasizes the suitability of the system described here for multiple gene replacement and deletion strategies in a single genetic background.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1996
Oscar P. Kuipers; Gabriele Bierbaum; Birgit Ottenwälder; Helen M. Dodd; Nicky Horn; Jörg W. Metzger; Thomas Kupke; Volker Gnau; Roger S. Bongers; Patrick T.C. van den Bogaard; Hans Kosters; Harry S. Rollema; Willem M. de Vos; Roland J. Siezen; Günther Jung; Friedrich Götz; Hans-Georg Sahl; Michael J. Gasson
Whereas protein engineering of enzymes and structural proteins nowadays is an established research tool for studying structure-function relationships of polypeptides and for improving their properties, the engineering of posttranslationally modified peptides, such as the lantibiotics, is just coming of age. The engineering of lantibiotics is less straightforward than that of unmodified proteins, since expression systems should be developed not only for the structural genes but also for the genes encoding the biosynthetic enzymes, immunity protein and regulatory proteins. Moreover, correct posttranslational modification of specific residues could in many cases be a prerequisite for production and secretion of the active lantibiotic, which limits the number of successful mutations one can apply. This paper describes the development of expression systems for the structural lantibiotic genes for nisin A, nisin Z, gallidermin, epidermin and Pep5, and gives examples of recently produced site-directed mutants of these lantibiotics. Characterization of the mutants yielded valuable information on biosynthetic requirements for production. Moreover, regions in the lantibiotics were identified that are of crucial importance for antimicrobial activity. Eventually, this knowledge will lead to the rational design of lantibiotics optimally suited for fighting specific undesirable microorganisms. The mutants are of additional value for studies directed towards the elucidation of the mode of action of lantibiotics.
Applied and Environmental Microbiology | 2007
Maria L. Marco; Roger S. Bongers; Willem M. de Vos; Michiel Kleerebezem
ABSTRACT Lactobacillus plantarum is a common inhabitant of mammalian gastrointestinal tracts, and L. plantarum strain WCFS1 is a human isolate with a known genome sequence. L. plantarum WCFS1 survives intestinal passage in an active form, and its transit time and transcriptional activities were monitored in 15 BALB/c mice at 2, 4, 6, 8, and 24 h after being fed a single intragastric dose of this organism. Enumeration of viable cells isolated from fecal material revealed that the majority of the L. plantarum inoculum transited the mouse intestine within 4 h after ingestion. Three mice were sacrificed at each time point, and total RNA was isolated from the mouse intestinal compartments (stomach through colon). Quantification of L. plantarum 16S rRNA by quantitative real-time reverse-transcription-PCR revealed that L. plantarum was present at elevated levels in the stomach and small intestine for at least 4 h following ingestion and for over 8 h in the cecum and colon. We also examined the expression of 9 L. plantarum housekeeping genes and 15 L. plantarum in vivo-inducible (ivi) genes previously identified by recombination-based in vivo expression technology to be induced in the mouse gastrointestinal tract. The relative expression levels of the ivi genes increased up to 350-fold in the mouse intestine compared to levels observed for L. plantarum WCFS1 cells grown in a rich laboratory medium. Moreover, several genes displayed intestinal compartment-specific (small intestine versus colon) activities. These results confirm that L. plantarum displays specific and differential responses at various sites along the mammalian intestine.
Applied and Environmental Microbiology | 2008
Jolanda Lambert; Roger S. Bongers; Willem M. de Vos; Michiel Kleerebezem
ABSTRACT Bile salts play an important role in the digestion of lipids in vertebrates and are synthesized and conjugated to either glycine or taurine in the liver. Following secretion of bile salts into the small intestine, intestinal microbes are capable of deconjugating the glycine or taurine from the bile salts, using an enzyme called bile salt hydrolase (Bsh). Intestinal lactobacilli are regarded as major contributors to bile salt hydrolysis in vivo. Since the bile salt-hydrolyzing strain Lactobacillus plantarum WCFS1 was predicted to carry four bsh genes (bsh1, bsh2, bsh3, and bsh4), the functionality of these bsh genes was explored using Lactococcus lactis heterologous overexpression and multiple bsh deletion strains. Thus, Bsh1 was shown to be responsible for the majority of Bsh activity in L. plantarum WCFS1. In addition, bsh1 of L. plantarum WCFS1 was shown to be involved in conferring tolerance to specific bile salts (i.e., glycocholic acid). Northern blot analysis established that bsh1, bsh2, bsh3, and bsh4 are all expressed in L. plantarum WCFS1 during the exponential growth phase. Following biodiversity analysis, bsh1 appeared to be the only bsh homologue that was variable among L. plantarum strains; furthermore, the presence of bsh1 correlated with the presence of Bsh activity, suggesting that Bsh1 is commonly responsible for Bsh activity in L. plantarum strains. The fact that bsh2, bsh3, and bsh4 genes appeared to be conserved among L. plantarum strains suggests an important role of these genes in the physiology and lifestyle of the species L. plantarum. Analysis of these additional bsh-like genes in L. plantarum WCFS1 suggests that they might encode penicillin acylase rather than Bsh activity, indicating their implication in the conversion of substrates other than bile acids in the natural habitat.
Environmental Microbiology | 2009
Maria L. Marco; Theodorus H.F. Peters; Roger S. Bongers; Douwe Molenaar; Saskia van Hemert; Justin L. Sonnenburg; Jeffrey I. Gordon; Michiel Kleerebezem
Lactobacillus plantarum is a common inhabitant of mammalian gastrointestinal tracts. Strains of L. plantarum are also marketed as probiotics intended to confer beneficial health effects upon delivery to the human gut. To understand how L. plantarum adapts to its gut habitat, we used whole genome transcriptional profiling to characterize the transcriptome of strain WCFS1 during colonization of the caeca of adult germ-free C57Bl/6 J mice fed a standard low-fat rodent chow diet rich in complex plant polysaccharides or a prototypic Western diet high in simple sugars and fat. Lactobacillus plantarum colonized the digestive tracts of these animals to high levels, although L. plantarum was found in 10-fold higher amounts in the caeca of mice fed the standard chow. Metabolic reconstructions based on the transcriptional data sets revealed that genes involved in carbohydrate transport and metabolism form the principal functional group that is upregulated in vivo compared with exponential phase cells grown in three different culture media, and that a Western diet provides a more nutritionally restricted, growth limiting milieu for the microbe in the distal gut. A set of bacterial genes encoding cell surface-related functions were differentially regulated in both groups of mice. This set included downregulated genes required for the d-alanylation of lipoteichoic acids, extracellular structures of L. plantarum that mediate interactions with the host immune system. These results, obtained in a reductionist gnotobiotic mouse model of the gut ecosystem, provide insights about the niches (professions) of this lactic acid bacterium, and a context for systematically testing features that affect epithelial and immune cell responses to this organism in the digestive tract.
Applied and Environmental Microbiology | 2005
Roger S. Bongers; Jan-Willem Veening; Maarten Van Wieringen; Oscar P. Kuipers; Michiel Kleerebezem
ABSTRACT A system for subtilin-regulated gene expression (SURE) in Bacillus subtilis that is based on the regulatory module involved in cell-density-dependent control of the production of subtilin is described. An integration vector for introduction of the essential sensor-regulator couple spaRK into the amyE locus of the B. subtilis chromosome and a B. subtilis 168-derived production host in which the spaRK genes were functionally introduced were constructed. Furthermore, several expression plasmids harboring the subtilin-inducible wild-type spaS promoter or a mutated derivative of this promoter were constructed, which facilitated both transcriptional and translational promoter-gene fusions. Functional characterization of both spaS promoters and the cognate expression host could be performed by controlled overproduction of the β-glucuronidase (GusA) and green fluorescent protein (GFP) reporters. Both spaS promoters exhibited very low levels of basal expression, while extremely high levels of expression were observed upon induction with subtilin. Moreover, the level of expression depended directly on the amount of inducer (subtilin) used. The wild-type spaS promoter appeared to be more strictly controlled by the addition of subtilin, while the highest levels of expression were obtained when the mutated spaS promoter was used. Induction by subtilin led to 110- and 80-fold increases in GusA activity for the spaS promoter and its mutant derivative, respectively. Since the SURE system has attractive functional characteristics, including promoter silence under noninducing conditions and a controlled and high level of expression upon induction, and since it is not subject to catabolite control, we anticipate that it can provide a suitable expression system for various scientific and industrial applications.
Journal of Bacteriology | 2003
Roger S. Bongers; Marcel H. N. Hoefnagel; Marjo Starrenburg; Marco A. J. Siemerink; John G. A. Arends; Jeroen Hugenholtz; Michiel Kleerebezem
Lactococcus lactis NZ9010 in which the las operon-encoded ldh gene was replaced with an erythromycin resistance gene cassette displayed a stable phenotype when grown under aerobic conditions, and its main end products of fermentation under these conditions were acetate and acetoin. However, under anaerobic conditions, the growth of these cells was strongly retarded while the main end products of fermentation were acetate and ethanol. Upon prolonged subculturing of this strain under anaerobic conditions, both the growth rate and the ability to produce lactate were recovered after a variable number of generations. This recovery was shown to be due to the transcriptional activation of a silent ldhB gene coding for an Ldh protein (LdhB) with kinetic parameters different from those of the native las operon-encoded Ldh protein. Nevertheless, cells producing LdhB produced mainly lactate as the end product of fermentation. The mechanism underlying the ldhB gene activation was primarily studied in a single-colony isolate of the recovered culture, designated L. lactis NZ9015. Integration of IS981 in the upstream region of ldhB was responsible for transcription activation of the ldhB gene by generating an IS981-derived -35 promoter region at the correct spacing with a natively present -10 region. Subsequently, analysis of 10 independently isolated lactate-producing derivatives of L. lactis NZ9010 confirmed that the ldhB gene is transcribed in all of them. Moreover, characterization of the upstream region of the ldhB gene in these derivatives indicated that site-specific and directional IS981 insertion represents the predominant mechanism of the observed recovery of the ability to produce lactate.
Applied and Environmental Microbiology | 2005
Roger S. Bongers; Marcel H. N. Hoefnagel; Michiel Kleerebezem
ABSTRACT Efficient conversion of glucose to acetaldehyde is achieved by nisin-controlled overexpression of Zymomonas mobilis pyruvate decarboxylase (pdc) and Lactococcus lactis NADH oxidase (nox) in L. lactis. In resting cells, almost 50% of the glucose consumed could be redirected towards acetaldehyde by combined overexpression of pdc and nox under anaerobic conditions.
PLOS ONE | 2012
Peter A. Bron; Michiel Wels; Roger S. Bongers; Hermien van Bokhorst-van de Veen; Anne Wiersma; Lex Overmars; Maria L. Marco; Michiel Kleerebezem
Lactic acid bacteria (LAB) are utilized widely for the fermentation of foods. In the current post-genomic era, tools have been developed that explore genetic diversity among LAB strains aiming to link these variations to differential phenotypes observed in the strains investigated. However, these genotype-phenotype matching approaches fail to assess the role of conserved genes in the determination of physiological characteristics of cultures by environmental conditions. This manuscript describes a complementary approach in which Lactobacillus plantarum WCFS1 was fermented under a variety of conditions that differ in temperature, pH, as well as NaCl, amino acid, and O2 levels. Samples derived from these fermentations were analyzed by full-genome transcriptomics, paralleled by the assessment of physiological characteristics, e.g., maximum growth rate, yield, and organic acid profiles. A data-storage and -mining suite designated FermDB was constructed and exploited to identify correlations between fermentation conditions and industrially relevant physiological characteristics of L. plantarum, as well as the associated transcriptome signatures. Finally, integration of the specific fermentation variables with the transcriptomes enabled the reconstruction of the gene-regulatory networks involved. The fermentation-genomics platform presented here is a valuable complementary approach to earlier described genotype-phenotype matching strategies which allows the identification of transcriptome signatures underlying physiological variations imposed by different fermentation conditions.
Microbial Cell Factories | 2012
Daniela M. Remus; Richard van Kranenburg; Iris I. van Swam; Nico Taverne; Roger S. Bongers; Michiel Wels; Jerry M. Wells; Peter A. Bron; Michiel Kleerebezem
BackgroundBacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well described. Therefore, improved knowledge on these molecules is potentially of great importance to understand the strain-specific and proposed beneficial modes of probiotic action.ResultsThe Lactobacillus plantarum WCFS1 genome encodes 4 clusters of genes that are associated with surface polysaccharide production. Two of these clusters appear to encode all functions required for capsular polysaccharide formation (cps2A-J and cps4A-J), while the remaining clusters are predicted to lack genes encoding chain-length control functions and a priming glycosyl-transferase (cps1A-I and cps3A-J). We constructed L. plantarum WCFS1 gene deletion mutants that lack individual (Δcps1A-I, Δcps2A-J, Δcps3A-J and Δcps4A-J) or combinations of cps clusters (Δcps1A-3J and Δcps1A-3I, Δcps4A-J) and assessed the genome wide impact of these mutations by transcriptome analysis. The cps cluster deletions influenced the expression of variable gene sets in the individual cps cluster mutants, but also considerable numbers of up- and down-regulated genes were shared between mutants in cps cluster 1 and 2, as well as between mutant in cps clusters 3 and 4. Additionally, the composition of overall cell surface polysaccharide fractions was altered in each mutant strain, implying that despite the apparent incompleteness of cps1A-I and cps3A-J, all clusters are active and functional in L. plantarum. The Δcps1A-I strain produced surface polysaccharides in equal amounts as compared to the wild-type strain, while the polysaccharides were characterized by a reduced molar mass and the lack of rhamnose. The mutants that lacked functional copies of cps2A-J, cps3A-J or cps4A-J produced decreased levels of surface polysaccharides, whereas the molar mass and the composition of polysaccharides was not affected by these cluster mutations. In the quadruple mutant, the amount of surface polysaccharides was strongly reduced. The impact of the cps cluster mutations on toll-like receptor (TLR)-mediated human nuclear factor (NF)-κB activation in host cells was evaluated using a TLR2 reporter cell line. In comparison to a L. plantarum wild-type derivative, TLR2 activation remained unaffected by the Δcps1A-I and Δcps3A-J mutants but appeared slightly increased after stimulation with the Δcps2A-J and Δcps4A-J mutants, while the Δcps1A-3J and Δcps1A-3J, Δcps4A-J mutants elicited the strongest responses and clearly displayed enhanced TLR2 signaling.ConclusionsOur study reveals that modulation of surface glycan characteristics in L. plantarum highlights the role of these molecules in shielding of cell envelope embedded host receptor ligands. Although the apparently complete cps clusters (cps2A-J and cps4A-J) contributed individually to this shielding, the removal of all cps clusters led to the strongest signaling enhancement. Our findings provide new insights into cell surface glycan biosynthesis in L. plantarum, which bears relevance in the context of host-cell signaling by probiotic bacteria.