Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger T. Worrell is active.

Publication


Featured researches published by Roger T. Worrell.


Journal of Biological Chemistry | 2006

slc26a3 (dra)-deficient Mice Display Chloride-losing Diarrhea, Enhanced Colonic Proliferation, and Distinct Up-regulation of Ion Transporters in the Colon

Clifford W. Schweinfest; Demetri D. Spyropoulos; Kelly W. Henderson; Jae-Ho Kim; Jeannie M. Chapman; Sharon Barone; Roger T. Worrell; Zhaohui Wang; Manoocher Soleimani

Mutations in the SLC26A3 (DRA (down-regulated in adenoma)) gene constitute the molecular etiology of congenital chloride-losing diarrhea in humans. To ascertain its role in intestinal physiology, gene targeting was used to prepare mice lacking slc26a3. slc26a3-deficient animals displayed postpartum lethality at low penetrance. Surviving dra-deficient mice exhibited high chloride content diarrhea, volume depletion, and growth retardation. In addition, the large intestinal loops were distended, with colonic mucosa exhibiting an aberrant growth pattern and the colonic crypt proliferative zone being greatly expanded in slc26a3-null mice. Apical membrane chloride/base exchange activity was sharply reduced, and luminal content was more acidic in slc26a3-null mouse colon. The epithelial cells in the colon displayed unique adaptive regulation of ion transporters; NHE3 expression was enhanced in the proximal and distal colon, whereas colonic H,K-ATPase and the epithelial sodium channel showed massive up-regulation in the distal colon. Plasma aldosterone was increased in slc26a3-null mice. We conclude that slc26a3 is the major apical chloride/base exchanger and is essential for the absorption of chloride in the colon. In addition, slc26a3 regulates colonic crypt proliferation. Deletion of slc26a3 results in chloride-rich diarrhea and is associated with compensatory adaptive up-regulation of ion-absorbing transporters.


Journal of Biological Chemistry | 1999

Regulation of Na+ Reabsorption by the Aldosterone-induced Small G Protein K-Ras2A

James D. Stockand; Bret Spier; Roger T. Worrell; Gang Yue; N.F. Al-Baldawi; Douglas C. Eaton

Xenopus laevis A6 cells were used as model epithelia to test the hypothesis that K-Ras2A is an aldosterone-induced protein necessary for steroid-regulated Na+ transport. The possibility that increased K-Ras2A alone is sufficient to mimic aldosterone action on Na+ transport also was tested. Aldosterone treatment increased K-Ras2A protein expression 2.8-fold within 4 h. Active Ras is membrane associated. After aldosterone treatment, 75% of K-Ras was localized to the plasma membrane compared with 25% in the absence of steroid. Aldosterone also increased the amount of active (phosphorylated) mitogen-activated protein kinase kinase likely through K-Ras2A signaling. Steroid-induced K-Ras2A protein levels and Na+ transport were decreased with antisense K-ras2A oligonucleotides, showing that K-Ras2A is necessary for the natriferic actions of aldosterone. Aldosterone-induced Na+ channel activity, was decreased from 0.40 to 0.09 by pretreatment with antisense rasoligonucleotide, implicating the luminal Na+ channel as one final effector of Ras signaling. Overexpression of K-Ras2A increased Na+ transport approximately 2.2-fold in the absence of aldosterone. These results suggest that aldosterone signals to the luminal Na+ channel via multiple pathways and that K-Ras2A levels are limiting for a portion of the aldosterone-sensitive Na+ transport.


Journal of Biological Chemistry | 1997

Identification of an Amiloride Binding Domain within the α-Subunit of the Epithelial Na+ Channel

Iskander I. Ismailov; Thomas Kieber-Emmons; Chaomei Lin; Bakhram K. Berdiev; Vadim Shlyonsky; Holly K. Patton; Catherine M. Fuller; Roger T. Worrell; Jonathan B. Zuckerman; Weijing Sun; Douglas C. Eaton; Dale J. Benos; Thomas R. Kleyman

Limited information is available regarding domains within the epithelial Na+ channel (ENaC) which participate in amiloride binding. We previously utilized the anti-amiloride antibody (BA7.1) as a surrogate amiloride receptor to delineate amino acid residues that contact amiloride, and identified a putative amiloride binding domain WYRFHY (residues 278–283) within the extracellular domain of αrENaC. Mutations were generated to examine the role of this sequence in amiloride binding. Functional analyses of wild type (wt) and mutant αrENaCs were performed by cRNA expression in Xenopus oocytes and by reconstitution into planar lipid bilayers. Wild type αrENaC was inhibited by amiloride with aK i of 169 nm. Deletion of the entire WYRFHY tract (αrENaC Δ278–283) resulted in a loss of sensitivity of the channel to submicromolar concentrations of amiloride (K i = 26.5 μm). Similar results were obtained when either αrENaC or αrENaC Δ278–283 were co-expressed with wt β- and γrENaC (K i values of 155 nm and 22.8 μm, respectively). Moreover, αrENaC H282D was insensitive to submicromolar concentrations of amiloride (K i = 6.52 μm), whereas αrENaC H282R was inhibited by amiloride with a K i of 29 nm. These mutations do not alter ENaC Na+:K+ selectivity nor single-channel conductance. These data suggest that residues within the tract WYRFHY participate in amiloride binding. Our results, in conjunction with recent studies demonstrating that mutations within the membrane-spanning domains of αrENaC and mutations preceding the second membrane-spanning domains of α-, β-, and γrENaC alters amiloride’s K i , suggest that selected regions of the extracellular loop of αrENaC may be in close proximity to residues within the channel pore.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2009

Intestinal ischemia-reperfusion injury: reversible and irreversible damage imaged in vivo

Yanfang Guan; Roger T. Worrell; Timothy A. Pritts; Marshall H. Montrose

The early events in an intestinal ischemic episode have been difficult to evaluate. Using in vivo microscopy we have analyzed in real-time the effects of short (15 min) and long (40-50 min) ischemia with subsequent reperfusion (IR), evaluating structure, integrity, and functioning of the mouse jejunal mucosa while monitoring blood flow by confocal microscopy. IR was imposed by inflation/deflation of a vascular occluder, and blood flow was monitored and confirmed with scanning confocal imaging. After short ischemia, villus tip cells revealed a rapid increase (23%) in the intracellular NAD(P)H concentration (confocal autofluorescence microscopy), and the pH-sensitive probe BCECF showed a biphasic response of the intracellular pH (pH(i)), quickly alkalinizing from the resting value of 6.8 +/- 0.1 to 7.1 +/- 0.1 but then strongly acidifying to 6.3 +/- 0.1. Upon reperfusion, values returned toward control. In contrast, results were heterogeneous after long IR. During long ischemia, one-third of the epithelial cells remained viable with reversible changes upon reperfusion, but remaining cells lost membrane integrity (Lucifer Yellow uptake, LY) and had membrane blebs during ischemia. These effects became more pronounced as the reperfusion interval progressed when cells exhibited more severely affected NAD(P)H and pH(i) values, larger blebs, and more LY uptake and eventually were shed from the villus. Results from stereo microscopy suggest that these irreversible effects of IR may have occurred as a result of incomplete restorations of local blood flow, especially at the antimesenteric side of the intestine. We conclude that the adverse effects of short ischemia on the jejunum epithelium are fully reversible during the reperfusion interval. However, after long ischemia, reperfusion cannot restore normal structure and functioning of a majority of cells, which deteriorate further. Our results provide a basis for defining the cellular events that cause tissue to transit from reversible to irreversible damage during IR.


The Journal of Physiology | 2015

The use of murine-derived fundic organoids in studies of gastric physiology.

Michael Schumacher; Eitaro Aihara; Rui Feng; Amy C. Engevik; Noah F. Shroyer; Karen M. Ottemann; Roger T. Worrell; Marshall H. Montrose; Ramesh A. Shivdasani; Yana Zavros

An in vitro approach to study gastric development is primary mouse‐derived epithelium cultured as three‐dimensional spheroids known as organoids. We have devised two unique gastric fundic‐derived organoid cultures: model 1 for the expansion of gastric fundic stem cells, and model 2 for the maintenance of mature cell lineages. Organoids maintained in co‐culture with immortalized stomach mesenchymal cells express robust numbers of surface pit, mucous neck, chief, endocrine and parietal cells. Histamine induced a significant decrease in intraluminal pH that was reversed by omeprazole in fundic organoids and indicated functional activity and regulation of parietal cells. Localized photodamage resulted in rapid cell exfoliation coincident with migration of neighbouring cells to the damaged area, sustaining epithelial continuity. We report the use of these models for studies of epithelial cell biology and cell damage and repair.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Human Clostridium difficile infection: inhibition of NHE3 and microbiota profile.

Melinda A. Engevik; Kristen A. Engevik; Mary Beth Yacyshyn; Jiang Wang; Daniel J. Hassett; Benjamin J. Darien; Bruce R. Yacyshyn; Roger T. Worrell

Clostridium difficile infection (CDI) is principally responsible for hospital acquired, antibiotic-induced diarrhea and colitis and represents a significant financial burden on our healthcare system. Little is known about C. difficile proliferation requirements, and a better understanding of these parameters is critical for development of new therapeutic targets. In cell lines, C. difficile toxin B has been shown to inhibit Na(+)/H(+) exchanger 3 (NHE3) and loss of NHE3 in mice results in an altered intestinal environment coupled with a transformed gut microbiota composition. However, this has yet to be established in vivo in humans. We hypothesize that C. difficile toxin inhibits NHE3, resulting in alteration of the intestinal environment and gut microbiota. Our results demonstrate that CDI patient biopsy specimens have decreased NHE3 expression and CDI stool has elevated Na(+) and is more alkaline compared with stool from healthy individuals. CDI stool microbiota have increased Bacteroidetes and Proteobacteria and decreased Firmicutes phyla compared with healthy subjects. In vitro, C. difficile grows optimally in the presence of elevated Na(+) and alkaline pH, conditions that correlate to changes observed in CDI patients. To confirm that inhibition of NHE3 was specific to C. difficile, human intestinal organoids (HIOs) were injected with C. difficile or healthy and CDI stool supernatant. Injection of C. difficile and CDI stool decreased NHE3 mRNA and protein expression compared with healthy stool and control HIOs. Together these data demonstrate that C. difficile inhibits NHE3 in vivo, which creates an altered environment favored by C. difficile.


Journal of Biological Chemistry | 2004

Identification of a carboxyl-terminal motif essential for the targeting of Na+-HCO-3 cotransporter NBC1 to the basolateral membrane.

Hong C. Li; Roger T. Worrell; Jeffrey B. Matthews; Holleh Husseinzadeh; Lisa Neumeier; Snezana Petrovic; Laura Conforti; Manoocher Soleimani

The Na+-\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{HC}\mathrm{O}_{3}^{-}\) \end{document} cotransporter NBC1 is located exclusively on the basolateral membrane and mediates vectorial transport of bicarbonate in a number of epithelia, including kidney and pancreas. To identify the motifs that direct the targeting of kidney NBC1 to basolateral membrane, wild type and various carboxyl-terminally truncated kidney NBC1 mutants were generated, fused translationally in-frame to GFP, and transiently expressed in kidney epithelial cells. GFP was linked to the NH2 terminus of NBC1, and labeling was examined by confocal microscopy. Full-length (1035 aa) and mutants with the deletion of 3 or 20 amino acids from the COOH-terminal end of NBC1 (lengths 1032 and 1015 aa, respectively) showed strong and exclusive targeting on the basolateral membrane. However, the deletion of 26 amino acid residues from the COOH-terminal end (length 1010 aa) resulted in retargeting of NBC1 to the apical membrane. Expression studies in oocytes demonstrated that the NBC1 mutant with the deletion of 26 amino acid residues from the COOH-terminal end is functional. Additionally, the deletion of the last 23 amino acids or mutation in the conserved residue Phe at position 1013 on the COOH-terminal end demonstrated retargeting to the apical membrane. We propose that a carboxyl-terminal motif with the sequence QQPFLS, which spans amino acid residues 1010-1015, and specifically the amino acid residue Phe (position 1013) are essential for the exclusive targeting of NBC1 to the basolateral membrane.


Journal of Biological Chemistry | 1999

S-Adenosyl-l-homocysteine Hydrolase Regulates Aldosterone-induced Na+ Transport

James D. Stockand; N.F. Al-Baldawi; Otor Al-Khalili; Roger T. Worrell; Douglas C. Eaton

Aldosterone-induced Na+reabsorption, in part, is regulated by a critical methyl esterification; however, the signal transduction pathway regulating this methylation remains unclear. The A6 cell line was used as a model epithelia to investigate regulation of aldosterone-induced Na+ transport byS-adenosyl-l-homocysteine hydrolase (SAHHase), the only enzyme in vertebrates known to catabolizeS-adenosyl-l-homocysteine (SAH), an end product inhibitor of methyl esterification. Sodium reabsorption was decreased within 2 h by 3-deazaadenosine, a competitive inhibitor of SAHHase, with a half inhibitory concentration between 40 and 50 μm. Aldosterone increased SAH catabolism by activating SAHHase. Increased SAH catabolism was associated with a concomitant increase in S-adenosylmethionine catabolism. Moreover, SAH decreased substrate methylation. Antisense oligonucleotide complementary to SAHHase mRNA decreased SAHHase activity and Na+ current by approximately 50%. Overexpression of SAHHase increased SAHHase activity and dependent substrate methyl esterification. Whereas basal Na+ current was not affected by overexpression of SAHHase, aldosterone-induced current in SAHHase-overexpressing cells was significantly potentiated. These results demonstrate that aldosterone induction of SAHHase activity is necessary for a concomitant relief of the methylation reaction from end product inhibition by SAH and the subsequent increase in Na+ reabsorption. Thus, regulation of SAHHase activity is a control point for aldosterone signal transduction, but SAHHase is not an aldosterone-induced protein.


Journal of The American Society of Nephrology | 2006

Chloride/Bicarbonate Exchanger SLC26A7 Is Localized in Endosomes in Medullary Collecting Duct Cells and Is Targeted to the Basolateral Membrane in Hypertonicity and Potassium Depletion

Jie Xu; Roger T. Worrell; Hong C. Li; Sharon Barone; Snezana Petrovic; Hassane Amlal; Manoocher Soleimani

SLC26A7 is a Cl(-)/HCO(3)(-) exchanger that is expressed on the basolateral membrane and in the cytoplasm of two distinct acid-secreting epithelial cells: The A-intercalated cells in the kidney outer medullary collecting duct and the gastric parietal cells. The intracellular localization of SLC26A7 suggests the possibility of trafficking between cell membrane and intracellular compartments. For testing this hypothesis, full-length human SLC26A7 cDNA was fused with green fluorescence protein and transiently expressed in MDCK epithelial cells. In monolayer cells in isotonic medium, SLC26A7 showed punctate distribution throughout the cytoplasm. However, in medium that was made hypertonic for 16 h, SLC26A7 was detected predominantly in the plasma membrane. The presence of mitogen-activated protein kinase inhibitors blocked the trafficking of SLC26A7 to the plasma membrane. Double-labeling studies demonstrated the localization of SLC26A7 to the transferrin receptor-positive endosomes. A chimera that was composed of the amino terminal fragment of SLC26A7 and the carboxyl terminal fragment of SLC26A1, and a C-terminal-truncated SLC26A7 were retained in the cytoplasm in hypertonicity. In separate studies, SLC26A7 showed predominant localization in plasma membrane in potassium-depleted isotonic medium (0.5 or 2 mEq/L KCl) versus cytoplasmic distribution in normal potassium isotonic medium (4 mEq/L). It is concluded that SLC26A7 is present in endosomes, and its targeting to the basolateral membrane is increased in hypertonicity and potassium depletion. The trafficking to the cell surface suggests novel functional upregulation of SLC26A7 in states that are associated with hypokalemia or increased medullary tonicity. Additional studies are needed to ascertain the role of SLC26A7 in enhanced bicarbonate absorption in outer medullary collecting duct in hypokalemia and in acid-base regulation in conditions that are associated with increased medullary tonicity.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Human Clostridium difficile infection: altered mucus production and composition.

Melinda A. Engevik; Mary Beth Yacyshyn; Kristen A. Engevik; Jiang Wang; Benjamin J. Darien; Daniel J. Hassett; Bruce R. Yacyshyn; Roger T. Worrell

The majority of antibiotic-induced diarrhea is caused by Clostridium difficile (C. difficile). Hospitalizations for C. difficile infection (CDI) have tripled in the last decade, emphasizing the need to better understand how the organism colonizes the intestine and maintain infection. The mucus provides an interface for bacterial-host interactions and changes in intestinal mucus have been linked host health. To assess mucus production and composition in healthy and CDI patients, the main mucins MUC1 and MUC2 and mucus oligosaccharides were examined. Compared with healthy subjects, CDI patients demonstrated decreased MUC2 with no changes in surface MUC1. Although MUC1 did not change at the level of the epithelia, MUC1 was the primary constituent of secreted mucus in CDI patients. CDI mucus also exhibited decreased N-acetylgalactosamine (GalNAc), increased N-acetylglucosamine (GlcNAc), and increased terminal galactose residues. Increased galactose in CDI specimens is of particular interest since terminal galactose sugars are known as C. difficile toxin A receptor in animals. In vitro, C. difficile is capable of metabolizing fucose, mannose, galactose, GlcNAc, and GalNAc for growth under healthy stool conditions (low Na(+) concentration, pH 6.0). Injection of C. difficile into human intestinal organoids (HIOs) demonstrated that C. difficile alone is sufficient to reduce MUC2 production but is not capable of altering host mucus oligosaccharide composition. We also demonstrate that C. difficile binds preferentially to mucus extracted from CDI patients compared with healthy subjects. Our results provide insight into a mechanism of C. difficile colonization and may provide novel target(s) for the development of alternative therapeutic agents.

Collaboration


Dive into the Roger T. Worrell's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary E. Shull

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel J. Hassett

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raymond A. Frizzell

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar

Ali Shawki

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge