Roger Tait
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roger Tait.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Kirstie J. Whitaker; Petra E. Vértes; Rafael Romero-Garcia; Michael Moutoussis; Gita Prabhu; Nikolaus Weiskopf; Martina F. Callaghan; Konrad Wagstyl; Timothy Rittman; Roger Tait; Cinly Ooi; John Suckling; Becky Inkster; Peter Fonagy; R. J. Dolan; Peter B. Jones; Ian M. Goodyer; Edward T. Bullmore
Significance Adolescence is a period of human brain growth and high incidence of mental health disorders. Here, we show consistently in two MRI cohorts that human brain changes in adolescence were concentrated on the more densely connected hubs of the connectome (i.e., association cortical regions that mediated efficient connectivity throughout the human brain structural network). Hubs were less myelinated at 14 y but had faster rates of myelination and cortical shrinkage in the 14- to 24-y period. This topologically focused process of cortical consolidation was associated with expression of genes enriched for normal synaptic and myelin-related processes and risk of schizophrenia. Consolidation of anatomical network hubs could be important for normal and clinically disordered adolescent brain development. How does human brain structure mature during adolescence? We used MRI to measure cortical thickness and intracortical myelination in 297 population volunteers aged 14–24 y old. We found and replicated that association cortical areas were thicker and less myelinated than primary cortical areas at 14 y. However, association cortex had faster rates of shrinkage and myelination over the course of adolescence. Age-related increases in cortical myelination were maximized approximately at the internal layer of projection neurons. Adolescent cortical myelination and shrinkage were coupled and specifically associated with a dorsoventrally patterned gene expression profile enriched for synaptic, oligodendroglial- and schizophrenia-related genes. Topologically efficient and biologically expensive hubs of the brain anatomical network had greater rates of shrinkage/myelination and were associated with overexpression of the same transcriptional profile as cortical consolidation. We conclude that normative human brain maturation involves a genetically patterned process of consolidating anatomical network hubs. We argue that developmental variation of this consolidation process may be relevant both to normal cognitive and behavioral changes and the high incidence of schizophrenia during human brain adolescence.
Brain | 2013
Natalia del Campo; Tim D. Fryer; Young T. Hong; Rob Smith; Laurent Brichard; Julio Acosta-Cabronero; Samuel R. Chamberlain; Roger Tait; David Izquierdo; Ralf Regenthal; Jonathan H. Dowson; John Suckling; Jean-Claude Baron; Franklin I. Aigbirhio; Trevor W. Robbins; Barbara J. Sahakian; Ulrich Müller
Through the combined use of 18F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scanned and tested on a computerized sustained attention task after oral methylphenidate (0.5 mg/kg) and placebo administration in a within-subject, double-blind, cross-over design. Although patients with attention deficit/hyperactivity disorder as a group showed significant attentional deficits and reduced grey matter volume in fronto-striato-cerebellar and limbic networks, they had equivalent D2/D3 receptor availability and equivalent increases in endogenous dopamine after methylphenidate treatment to that observed in healthy control subjects. However, poor attentional performers drawn from both the attention deficit/hyperactivity disorder and the control groups had significantly reduced left caudate dopamine activity. Methylphenidate significantly increased dopamine levels in all nigro-striatal regions, thereby normalizing dopamine levels in the left caudate in low performers. Behaviourally, methylphenidate improved sustained attention in a baseline performance-dependent manner, irrespective of diagnosis. This finding was accompanied by an equally performance-dependent effect of the drug on dopamine release in the midbrain, whereby low performers showed reduced dopamine release in this region. Collectively, these findings support a dimensional model of attentional deficits and underlying nigro-striatal dopaminergic mechanisms of attention deficit/hyperactivity disorder that extends into the healthy population. Moreover, they confer midbrain dopamine autoreceptors a hitherto neglected role in the therapeutic effects of oral methylphenidate in attention deficit/hyperactivity disorder. The absence of significant case–control differences in D2/D3 receptor availability (despite the observed relationships between dopamine activity and attention) suggests that dopamine dysregulation per se is unlikely to be the primary cause underlying attention deficit/hyperactivity disorder pathology in adults. This conclusion is reinforced by evidence of neuroanatomical changes in the same set of patients with attention deficit/hyperactivity disorder.
PLOS ONE | 2013
Nicholas A. Howell; Yulia Worbe; Iris Lange; Roger Tait; Michael A Irvine; Paula Banca; Neil A. Harrison; Edward T. Bullmore; William D. Hutchison; Valerie Voon
Background Binge drinking is a serious public health issue associated with cognitive, physiological, and anatomical differences from healthy individuals. No studies, however, have reported subcortical grey matter differences in this population. To address this, we compared the grey matter volumes of college-age binge drinkers and healthy controls, focusing on the ventral striatum, hippocampus and amygdala. Method T1-weighted images of 19 binge drinkers and 19 healthy volunteers were analyzed using voxel-based morphometry. Structural data were also covaried with Alcohol Use Disorders Identification Test (AUDIT) scores. Cluster-extent threshold and small volume corrections were both used to analyze imaging data. Results Binge drinkers had significantly larger ventral striatal grey matter volumes compared to controls. There were no between group differences in hippocampal or amygdalar volume. Ventral striatal, amygdalar, and hippocampal volumes were also negatively related to AUDIT scores across groups. Conclusions Our findings stand in contrast to the lower ventral striatal volume previously observed in more severe forms of alcohol use disorders, suggesting that college-age binge drinkers may represent a distinct population from those groups. These findings may instead represent early sequelae, compensatory effects of repeated binge and withdrawal, or an endophenotypic risk factor.
international conference of the ieee engineering in medicine and biology society | 2006
Gerald Schaefer; Roger Tait; Shao Ying Zhu
Thermography captures the temperature distribution of the human skin and is employed in various medical applications. Often it is useful to cross-reference the resulting thermograms with visual images of the patient, either to see which part of the anatomy is affected by a certain disease or to judge the efficacy of the treatment. An attractive approach to provide this information is to overlay the two image types and show a composite image to the clinician. Producing such an overlay however is a non-trivial task due to differences in image capturing conditions of the two modalities. In this paper we introduce an approach that produces accurate overlays of thermal and visual medical images. First unnecessary background information of the visual part are removed by an image segmentation step based on skin detection. The thermal image is then aligned through an intensity based image registration technique. Experimental results based on an set of visual-thermal image pairs demonstrate the effectiveness of the proposed approach
PLOS ONE | 2014
Fruzsina Soltesz; John Suckling; Philip Lawrence; Roger Tait; Cinly Ooi; Graham Bentley; Chris M. Dodds; Sam Miller; David R Wille; Misha Byrne; Simon McHugh; Mark A. Bellgrove; Rodney J. Croft; Bai Lu; Edward T. Bullmore; Pradeep J. Nathan
Increasing evidence suggests that synaptic dysfunction is a core pathophysiological hallmark of neurodegenerative disorders. Brain-derived neurotropic factor (BDNF) is key synaptogenic molecule and targeting synaptic repair through modulation of BDNF signalling has been suggested as a potential drug discovery strategy. The development of such “synaptogenic” therapies depend on the availability of BDNF sensitive markers of synaptic function that could be utilized as biomarkers for examining target engagement or drug efficacy in humans. Here we have utilized the BDNF Val66Met genetic polymorphism to examine the effect of the polymorphism and genetic load (i.e. Met allele load) on electrophysiological (EEG) markers of synaptic activity and their structural (MRI) correlates. Sixty healthy adults were prospectively recruited into the three genetic groups (Val/Val, Val/Met, Met/Met). Subjects also underwent fMRI, tDCS/TMS, and cognitive assessments as part of a larger study. Overall, some of the EEG markers of synaptic activity and brain structure measured with MRI were the most sensitive markers of the polymorphism. Met carriers showed decreased oscillatory activity and synchrony in the neural network subserving error-processing, as measured during a flanker task (ERN); and showed increased slow-wave activity during resting. There was no evidence for a Met load effect on the EEG measures and the polymorphism had no effects on MMN and P300. Met carriers also showed reduced grey matter volume in the anterior cingulate and in the (left) prefrontal cortex. Furthermore, anterior cingulate grey matter volume, and oscillatory EEG power during the flanker task predicted subsequent behavioural adaptation, indicating a BDNF dependent link between brain structure, function and behaviour associated with error processing and monitoring. These findings suggest that EEG markers such as ERN and resting EEG could be used as BDNF sensitive functional markers in early clinical development to examine target engagement or drug related efficacy of synaptic repair therapies in humans.
NeuroImage: Clinical | 2015
Cindy C. Hagan; Julia Graham; Roger Tait; Barry Widmer; Adrienne O. van Nieuwenhuizen; Cinly Ooi; Kirstie J. Whitaker; Tiago Simas; Edward T. Bullmore; Belinda R. Lennox; Barbara J. Sahakian; Ian M. Goodyer; John Suckling
Objective There is little understanding of the neural system abnormalities subserving adolescent major depressive disorder (MDD). In a cross-sectional study we compare currently unipolar depressed with healthy adolescents to determine if group differences in grey matter volume (GMV) were influenced by age and illness severity. Method Structural neuroimaging was performed on 109 adolescents with current MDD and 36 healthy controls, matched for age, gender, and handedness. GMV differences were examined within the anterior cingulate cortex (ACC) and across the whole-brain. The effects of age and self-reported depressive symptoms were also examined in regions showing significant main or interaction effects. Results Whole-brain voxel based morphometry revealed no significant group differences. At the whole-brain level, both groups showed a main effect of age on GMV, although this effect was more pronounced in controls. Significant group-by-age interactions were noted: A significant regional group-by-age interaction was observed in the ACC. GMV in the ACC showed patterns of age-related differences that were dissimilar between adolescents with MDD and healthy controls. GMV in the thalamus showed an opposite pattern of age-related differences in adolescent patients compared to healthy controls. In patients, GMV in the thalamus, but not the ACC, was inversely related with self-reported depressive symptoms. Conclusions The depressed adolescent brain shows dissimilar age-related and symptom-sensitive patterns of GMV differences compared with controls. The thalamus and ACC may comprise neural markers for detecting these effects in youth. Further investigations therefore need to take both age and level of current symptoms into account when disaggregating antecedent neural vulnerabilities for MDD from the effects of MDD on the developing brain.
Journal of Psychopharmacology | 2015
Louise M. Paterson; Remy Flechais; Anna Murphy; Laurence Reed; Sanja Abbott; Venkataramana Boyapati; Rebecca Elliott; David Erritzoe; Karen D. Ersche; Yetunde Faluyi; Luca Faravelli; Emilio Fernandez-Egea; Nicola Kalk; Shankar S Kuchibatla; John McGonigle; Antonio Metastasio; Inge Mick; Liam J. Nestor; Csaba Orban; Filippo Passetti; Eugenii A. Rabiner; Dana G. Smith; John Suckling; Roger Tait; Eleanor Taylor; Adam D. Waldman; Trevor W. Robbins; J.F. William Deakin; David J. Nutt; Anne Lingford-Hughes
Drug and alcohol dependence are global problems with substantial societal costs. There are few treatments for relapse prevention and therefore a pressing need for further study of brain mechanisms underpinning relapse circuitry. The Imperial College Cambridge Manchester (ICCAM) platform study is an experimental medicine approach to this problem: using functional magnetic resonance imaging (fMRI) techniques and selective pharmacological tools, it aims to explore the neuropharmacology of putative relapse pathways in cocaine, alcohol, opiate dependent, and healthy individuals to inform future drug development. Addiction studies typically involve small samples because of recruitment difficulties and attrition. We established the platform in three centres to assess the feasibility of a multisite approach to address these issues. Pharmacological modulation of reward, impulsivity and emotional reactivity were investigated in a monetary incentive delay task, an inhibitory control task, and an evocative images task, using selective antagonists for µ-opioid, dopamine D3 receptor (DRD3) and neurokinin 1 (NK1) receptors (naltrexone, GSK598809, vofopitant/aprepitant), in a placebo-controlled, randomised, crossover design. In two years, 609 scans were performed, with 155 individuals scanned at baseline. Attrition was low and the majority of individuals were sufficiently motivated to complete all five sessions (n=87). We describe herein the study design, main aims, recruitment numbers, sample characteristics, and explain the test hypotheses and anticipated study outputs.
Frontiers in Psychiatry | 2014
Jie-Yu Chuang; Graham K. Murray; Antonio Metastasio; Nuria Segarra; Roger Tait; Jenny Spencer; Hisham Ziauddeen; Robert B. Dudas; P. C. Fletcher; John Suckling
Negative symptoms occur in several major mental health disorders with undetermined mechanisms and unsatisfactory treatments; identification of their neural correlates might unveil the underlying pathophysiological basis and pinpoint the therapeutic targets. In this study, participants with major depressive disorder (n = 24), schizophrenia (n = 22), and healthy controls (n = 20) were assessed with 10 frequently used negative symptom scales followed by principal component analysis (PCA) of the scores. A linear model with the prominent components identified by PCA was then regressed on gray and white-matter volumes estimated from T1-weighted magnetic resonance imaging. In depressed patients, negative symptoms such as blunted affect, alogia, withdrawal, and cognitive impairment, assessed mostly via clinician-rated scales were inversely associated with gray matter volume in the bilateral cerebellum. In patients with schizophrenia, anhedonia, and avolition evaluated via self-rated scales inversely related to white-matter volume in the left anterior limb of internal capsule/anterior thalamic radiation and positively in the left superior longitudinal fasiculus. The pathophysiological mechanisms underlying negative symptoms might differ between depression and schizophrenia. These results also point to future negative symptom scale development primarily focused on detecting and monitoring the corresponding changes to brain structure or function.
NeuroImage | 2011
Natalia del Campo; Roger Tait; Julio Acosta-Cabronero; Young T. Hong; David Izquierdo-Garcia; Rob Smith; Franklin I. Aigbirhio; Barbara J. Sahakian; Ulrich Müller; Trevor W. Robbins; Tim D. Fryer
Sub-striatal regions of interest (ROIs) are widely used in PET studies to investigate the role of dopamine in the modulation of neural networks implicated in emotion, cognition and motor function. One common approach is that of Mawlawi et al. (2001) and Martinez et al. (2003), where each striatum is divided into five sub-regions. This study focuses on the use of two spatial normalization-based alternatives to manual sub-striatal ROI delineation per subject: manual ROI delineation on a template brain and the production of probabilistic ROIs from a set of subject-specific manually delineated ROIs. Two spatial normalization algorithms were compared: SPM5 unified segmentation and ART. The ability of these methods to quantify sub-striatal regional non-displaceable binding potential (BP(ND)) and BP(ND) % change (following methylphenidate) was tested on 32 subjects (16 controls and 16 ADHD patients) scanned with the dopamine D(2)/D(3) ligand [(18)F]fallypride. Probabilistic ROIs produced by ART provided the best results, with similarity index values against subject-specific manual ROIs of 0.75-0.89 (mean 0.84) compared to 0.70-0.85 (mean 0.79) for template ROIs. Correlations (r) for BP(ND) and BP(ND) % change between subject-specific manual ROIs and these probabilistic ROIs of 0.90-0.98 (mean 0.95) and 0.98-1.00 (mean 0.99) respectively were superior overall to those obtained with template ROIs, although only marginally so for BP(ND) % change. The significance of relationships between BP(ND) measures and both behavioural tasks and methylphenidate plasma levels was preserved with ART combined with both probabilistic and template ROIs. SPM5 virtually matched the performance of ART for BP(ND) % change estimation but was inferior for BP(ND) estimation in caudate sub-regions. ART spatial normalization combined with probabilistic ROIs and to a lesser extent template ROIs provides an efficient and accurate alternative to time-consuming manual sub-striatal ROI delineation per subject, especially when the parameter of interest is BP(ND) % change.
Psychopharmacology | 2016
Eleanor Taylor; Anna Murphy; Venkat Boyapati; Karen D. Ersche; Remy Flechais; Shankar S Kuchibatla; John McGonigle; Anotonio Metastasio; Liam J. Nestor; Csaba Orban; Fillippo Passetti; Louise M. Paterson; Dana G. Smith; John Suckling; Roger Tait; Anne Lingford-Hughes; Trevor W. Robbins; David J. Nutt; J.F. William Deakin; Rebecca Elliott; Iccam Platform
RationaleDependence on drugs and alcohol is associated with impaired impulse control, but deficits are rarely compared across individuals dependent on different substances using several measures within a single study.ObjectivesWe investigated impulsivity in abstinent substance-dependent individuals (AbD) using three complementary techniques: self-report, neuropsychological and neuroimaging. We hypothesised that AbDs would show increased impulsivity across modalities, and that this would depend on length of abstinence.MethodsData were collected from the ICCAM study: 57 control and 86 AbDs, comprising a group with a history of dependence on alcohol only (n = 27) and a group with history of dependence on multiple substances (“polydrug”, n = 59). All participants completed self-report measures of impulsivity: Barratt Impulsiveness Scale, UPPS Impulsive Behaviour Scale, Behaviour Inhibition/Activation System and Obsessive-Compulsive Inventory. They also performed three behavioural tasks: Stop Signal, Intra-Extra Dimensional Set-Shift and Kirby Delay Discounting; and completed a Go/NoGo task during fMRI.ResultsAbDs scored significantly higher than controls on self-report measures, but alcohol and polydrug dependent groups did not differ significantly from each other. Polydrug participants had significantly higher discounting scores than both controls and alcohol participants. There were no group differences on the other behavioural measures or on the fMRI measure.ConclusionsThe results suggest that the current set of self-report measures of impulsivity is more sensitive in abstinent individuals than the behavioural or fMRI measures of neuronal activity. This highlights the importance of developing behavioural measures to assess different, more relevant, aspects of impulsivity alongside corresponding cognitive challenges for fMRI.