Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roger Wattenhofer is active.

Publication


Featured researches published by Roger Wattenhofer.


operating systems design and implementation | 2002

Farsite: federated, available, and reliable storage for an incompletely trusted environment

Atul Adya; William J. Bolosky; Miguel Castro; Gerald Cermak; Ronnie Chaiken; John R. Douceur; Jon Howell; Jacob R. Lorch; Marvin M. Theimer; Roger Wattenhofer

Farsite is a secure, scalable file system that logically functions as a centralized file server but is physically distributed among a set of untrusted computers. Farsite provides file availability and reliability through randomized replicated storage; it ensures the secrecy of file contents with cryptographic techniques; it maintains the integrity of file and directory data with a Byzantine-fault-tolerant protocol; it is designed to be scalable by using a distributed hint mechanism and delegation certificates for pathname translations; and it achieves good performance by locally caching file data, lazily propagating file updates, and varying the duration and granularity of content leases. We report on the design of Farsite and the lessons we have learned by implementing much of that design.


international conference on computer communications | 2001

Distributed topology control for power efficient operation in multihop wireless ad hoc networks

Roger Wattenhofer; Li Li; Paramvir Bahl; Yi-Min Wang

The topology of wireless multihop ad hoc networks can be controlled by varying the transmission power of each node. We propose a simple distributed algorithm where each node makes local decisions about its transmission power and these local decisions collectively guarantee global connectivity. Specifically, based on the directional information, a node grows it transmission power until it finds a neighbor node in every direction. The resulting network topology increases the network lifetime by reducing the transmission power and reduces traffic interference by having low node degrees. Moreover, we show that the routes in the multihop network are efficient in power consumption. We give an approximation scheme in which the power consumption of each route can be made arbitrarily close to the optimal by carefully choosing the parameters. Simulation results demonstrate significant performance improvements.


acm special interest group on data communication | 2013

Achieving high utilization with software-driven WAN

Chi-Yao Hong; Srikanth Kandula; Ratul Mahajan; Ming Zhang; Vijay Gill; Mohan Nanduri; Roger Wattenhofer

We present SWAN, a system that boosts the utilization of inter-datacenter networks by centrally controlling when and how much traffic each service sends and frequently re-configuring the networks data plane to match current traffic demand. But done simplistically, these re-configurations can also cause severe, transient congestion because different switches may apply updates at different times. We develop a novel technique that leverages a small amount of scratch capacity on links to apply updates in a provably congestion-free manner, without making any assumptions about the order and timing of updates at individual switches. Further, to scale to large networks in the face of limited forwarding table capacity, SWAN greedily selects a small set of entries that can best satisfy current demand. It updates this set without disrupting traffic by leveraging a small amount of scratch capacity in forwarding tables. Experiments using a testbed prototype and data-driven simulations of two production networks show that SWAN carries 60% more traffic than the current practice.


ieee international conference computer and communications | 2006

The Complexity of Connectivity in Wireless Networks

Thomas Moscibroda; Roger Wattenhofer

We define and study the scheduling complexity in wireless networks, which expresses the theoretically achievable efficiency of MAC layer protocols. Given a set of communication requests in arbitrary networks, the scheduling complexity describes the amount of time required to successfully schedule all requests. The most basic and important network structure in wireless networks being connectivity, we study the scheduling complexity of connectivity, i.e., the minimal amount of time required until a connected structure can be scheduled. In this paper, we prove that the scheduling complexity of connectivity grows only polylogarithmically in the number of nodes. Specifically, we present a novel scheduling algorithm that successfully schedules a strongly connected set of links in time O(logn) even in arbitrary worst-case networks. On the other hand, we prove that standard MAC layer or scheduling protocols can perform much worse. Particularly, any protocol that either employs uniform or linear (a node’s transmit power is proportional to the minimum power required to reach its intended receiver) power assignment has a Ω(n) scheduling complexity in the worst case, even for simple communication requests. In contrast, our polylogarithmic scheduling algorithm allows many concurrent transmission by using an explicitly formulated non-linear power assignment scheme. Our results show that even in large-scale worst-case networks, there is no theoretical scalability problem when it comes to scheduling transmission requests, thus giving an interesting complement to the more pessimistic bounds for the capacity in wireless networks. All results are based on the physical model of communication, which takes into account that the signal-tonoise plus interference ratio (SINR) at a receiver must be above a certain threshold if the transmission is to be received correctly.


international conference on computer communications | 2001

The impact of Internet policy and topology on delayed routing convergence

Craig Labovitz; Ahba Ahuja; Roger Wattenhofer; Srinivasan Venkatachary

This paper examines the role inter-domain topology and routing policy play in the process of delayed Internet routing convergence. In previous work, we showed that the Internet lacks effective inter-domain path fail-over. Unlike circuit-switched networks which exhibit fail-over on the order of milliseconds, we found Internet backbone routers may take tens of minutes to reach a consistent view of the network topology after a fault. In this paper, we expand an our earlier work by exploring the impact of specific Internet provider policies and topologies on the speed of routing convergence. Based on data from the experimental injection and measurement of several hundred thousand inter-domain routing faults, we show that the time for end-to-end Internet convergence depends on the length of the longest possible backup autonomous system path between a source and destination node. We also demonstrate significant variation in the convergence behavior of Internet service providers, with the larger providers exhibiting the fastest convergence latencies. Finally, we discuss possible modifications to BGP and provider routing policies which if deployed, would improve inter-domain routing convergence.


international conference on computer communications | 2009

Capacity of Arbitrary Wireless Networks

Olga Goussevskaia; Roger Wattenhofer; Magnús M. Halldórsson; Emo Welzl

In this work we study the problem of determining the throughput capacity of a wireless network. We propose a scheduling algorithm to achieve this capacity within an approximation factor. Our analysis is performed in the physical interference model, where nodes are arbitrarily distributed in Euclidean space. We consider the problem separately from the routing problem and the power control problem, i.e., all requests are single-hop, and all nodes transmit at a fixed power level. The existing solutions to this problem have either concentrated on special-case topologies, or presented optimality guarantees which become arbitrarily bad (linear in the number of nodes) depending on the networks topology. We propose the first scheduling algorithm with approximation guarantee independent of the topology of the network. The algorithm has a constant approximation guarantee for the problem of maximizing the number of links scheduled in one time-slot. Furthermore, we obtain a O(log n) approximation for the problem of minimizing the number of time slots needed to schedule a given set of requests. Simulation results indicate that our algorithm does not only have an exponentially better approximation ratio in theory, but also achieves superior performance in various practical network scenarios. Furthermore, we prove that the analysis of the algorithm is extendable to higher-dimensional Euclidean spaces, and to more realistic bounded-distortion spaces, induced by non-isotropic signal distortions. Finally, we show that it is NP-hard to approximate the scheduling problem to within n 1-epsiv factor, for any constant epsiv > 0, in the non-geometric SINR model, in which path-loss is independent of the Euclidean coordinates of the nodes.


international conference on peer-to-peer computing | 2013

Information propagation in the Bitcoin network

Christian Decker; Roger Wattenhofer

Bitcoin is a digital currency that unlike traditional currencies does not rely on a centralized authority. Instead Bitcoin relies on a network of volunteers that collectively implement a replicated ledger and verify transactions. In this paper we analyze how Bitcoin uses a multi-hop broadcast to propagate transactions and blocks through the network to update the ledger replicas. We then use the gathered information to verify the conjecture that the propagation delay in the network is the primary cause for blockchain forks. Blockchain forks should be avoided as they are symptomatic for inconsistencies among the replicas in the network. We then show what can be achieved by pushing the current protocol to its limit with unilateral changes to the clients behavior.


symposium on discrete algorithms | 2006

The price of being near-sighted

Fabian Kuhn; Thomas Moscibroda; Roger Wattenhofer

Achieving a global goal based on local information is challenging, especially in complex and large-scale networks such as the Internet or even the human brain. In this paper, we provide an almost tight classification of the possible trade-off between the amount of local information and the quality of the global solution for general covering and packing problems. Specifically, we give a distributed algorithm using only small messages which obtains an (ρΔ)1/k-approximation for general covering and packing problems in time O(k2), where ρ depends on the LPs coefficients. If message size is unbounded, we present a second algorithm that achieves an O(n1/k) approximation in O(k) rounds. Finally, we prove that these algorithms are close to optimal by giving a lower bound on the approximability of packing problems given that each node has to base its decision on information from its k-neighborhood.


IEEE ACM Transactions on Networking | 2006

Network correlated data gathering with explicit communication: NP-completeness and algorithms

Razvan Cristescu; Baltasar Beferull-Lozano; Martin Vetterli; Roger Wattenhofer

We consider the problem of correlated data gathering by a network with a sink node and a tree-based communication structure, where the goal is to minimize the total transmission cost of transporting the information collected by the nodes, to the sink node. For source coding of correlated data, we consider a joint entropy-based coding model with explicit communication where coding is simple and the transmission structure optimization is difficult. We first formulate the optimization problem definition in the general case and then we study further a network setting where the entropy conditioning at nodes does not depend on the amount of side information, but only on its availability. We prove that even in this simple case, the optimization problem is NP-hard. We propose some efficient, scalable, and distributed heuristic approximation algorithms for solving this problem and show by numerical simulations that the total transmission cost can be significantly improved over direct transmission or the shortest path tree. We also present an approximation algorithm that provides a tree transmission structure with total cost within a constant factor from the optimal.


international conference on embedded networked sensor systems | 2009

Optimal clock synchronization in networks

Philipp Sommer; Roger Wattenhofer

Having access to an accurate time is a vital building block in all networks; in wireless sensor networks even more so, because wireless media access or data fusion may depend on it. Starting out with a novel analysis, we show that orthodox clock synchronization algorithms make fundamental mistakes. The state-of-the-art clock synchronization algorithm FTSP exhibits an error that grows exponentially with the size of the network, for instance. Since the involved parameters are small, the error only becomes visible in midsize networks of about 10--20 nodes. In contrast, we present PulseSync, a new clock synchronization algorithm that is asymptotically optimal. We evaluate PulseSync on a Mica2 testbed, and by simulation on larger networks. On a 20 node network, the prototype implementation of PulseSync outperforms FTSP by a factor of 5. Theory and simulation show that for larger networks, PulseSync offers an accuracy which is several orders of magnitude better than FTSP. To round off the presentation, we investigate several optimization issues, e.g. media access and local skew.

Collaboration


Dive into the Roger Wattenhofer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabian Kuhn

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge