Rohan G. T. Lowe
Murdoch University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rohan G. T. Lowe.
The Plant Cell | 2007
James K. Hane; Rohan G. T. Lowe; Peter S. Solomon; Kar-Chun Tan; Conrad L. Schoch; Joseph W. Spatafora; Pedro W. Crous; Chinappa Kodira; Bruce W. Birren; James E. Galagan; Stefano F.F. Torriani; Bruce A. McDonald; Richard P. Oliver
Stagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises 37,164,227 bp of nuclear DNA contained in 107 scaffolds. The circular mitochondrial genome comprises 49,761 bp encoding 46 genes, including four that are intron encoded. The nuclear genome assembly contains 26 classes of repetitive DNA, comprising 4.5% of the genome. Some of the repeats show evidence of repeat-induced point mutations consistent with a frequent sexual cycle. ESTs and gene prediction models support a minimum of 10,762 nuclear genes. Extensive orthology was found between the polyketide synthase family in S. nodorum and Cochliobolus heterostrophus, suggesting an ancient origin and conserved functions for these genes. A striking feature of the gene catalog was the large number of genes predicted to encode secreted proteins; the majority has no meaningful similarity to any other known genes. It is likely that genes for host-specific toxins, in addition to ToxA, will be found among this group. ESTs obtained from axenic mycelium grown on oleate (chosen to mimic early infection) and late-stage lesions sporulating on wheat leaves were obtained. Statistical analysis shows that transcripts encoding proteins involved in protein synthesis and in the production of extracellular proteases, cellulases, and xylanases predominate in the infection library. This suggests that the fungus is dependant on the degradation of wheat macromolecular constituents to provide the carbon skeletons and energy for the synthesis of proteins and other components destined for the developing pycnidiospores.
Biochemical Journal | 2006
Peter S. Solomon; Ormonde D. C. Waters; Cordula I. Jörgens; Rohan G. T. Lowe; Judith Rechberger; Robert D. Trengove; Richard P. Oliver
The physiological role of the mannitol cycle in the wheat pathogen Stagonospora nodorum (glume blotch) has been investigated by reverse genetics and metabolite profiling. A putative mannitol 2-dehydrogenase gene (Mdh1) was cloned by degenerate PCR and disrupted. The resulting mutated mdh1 strains lacked all detectable NADPH-dependent mannitol dehydrogenase activity. The mdh1 strains were unaffected for mannitol production but, surprisingly, were still able to utilize mannitol as a sole carbon source, suggesting a hitherto unknown mechanism for mannitol catabolism. The mutant strains were not compromised in their ability to cause disease or sporulate. To further our understanding of mannitol metabolism, a previously developed mannitol-1-phosphate dehydrogenase (gene mpd1) disruption construct [Solomon, Tan and Oliver (2005) Mol. Plant-Microbe Interact. 18, 110-115] was introduced into the mutated mdh1 background, resulting in a strain lacking both enzyme activities. The mpd1mdh1 strains were unable to grow on mannitol and produced only trace levels of mannitol. The double-mutant strains were unable to sporulate in vitro when grown on minimal medium for extended periods. Deficiency in sporulation was correlated with the depletion of intracellular mannitol pools. Significantly sporulation could be restored with the addition of mannitol. Pathogenicity of the double mutant was not compromised, although, like the previously characterized mpd1 mutants, the strains were unable to sporulate in planta. These findings not only question the currently hypothesized pathways of mannitol metabolism, but also identify for the first time that mannitol is required for sporulation of a filamentous fungus.
Fungal Genetics and Biology | 2009
Rohan G. T. Lowe; Maryn Lord; Kasia Rybak; Robert D. Trengove; Richard P. Oliver; Peter S. Solomon
Stagonospora nodorum is a necrotrophic fungal pathogen that is the causal agent of leaf and glume blotch on wheat. S. nodorum is a polycyclic pathogen, whereby rain-splashed pycnidiospores attach to and colonise wheat tissue and subsequently sporulate again within 2-3weeks. As several cycles of infection are needed for a damaging infection, asexual sporulation is a critical phase of its infection cycle. A non-targeted metabolomics screen for sporulation-associated metabolites identified that trehalose accumulated significantly in concert with asexual sporulation both in vitro and in planta. A reverse-genetics approach was used to investigate the role of trehalose in asexual sporulation. Trehalose biosynthesis was disrupted by deletion of the gene Tps1, encoding a trehalose 6-phosphate synthase, resulting in almost total loss of trehalose during in vitro growth and in planta. In addition, lesion development and pycnidia formation were also significantly reduced in tps1 mutants. Reintroduction of the Tps1 gene restored trehalose biosynthesis, pathogenicity and sporulation to wild-type levels. Microscopic examination of tps1 infected wheat leaves showed that pycnidial formation often halted at an early stage of development. Further examination of the tps1 phenotype revealed that tps1 pycnidiospores exhibited a reduced germination rate while under heat stress, and tps1 mutants had a reduced growth rate while under oxidative stress. This study confirms a link between trehalose biosynthesis and pathogen fitness in S.nodorum.
Molecular Plant Pathology | 2014
Angela P. Van de Wouw; Rohan G. T. Lowe; Candace Elliott; David J. Dubois; Barbara J. Howlett
The fungus Leptosphaeria maculans causes blackleg of Brassica species. Here, we report the mapping and subsequent cloning of an avirulence gene from L. maculans. This gene, termed AvrLmJ1, confers avirulence towards all three Brassica juncea cultivars tested. Analysis of RNA-seq data showed that AvrLmJ1 is housed in a region of the L. maculans genome which contains only one gene that is highly expressed in planta. The closest genes are 57 and 33 kb away and, like other avirulence genes of L. maculans, AvrLmJ1 is located within an AT-rich, gene-poor region of the genome. The encoded protein is 141 amino acids, has a predicted signal peptide and is cysteine rich. Two virulent isolates contain a premature stop codon in AvrLmJ1. Complementation of an isolate that forms cotyledonary lesions on B. juncea with the wild-type allele of AvrLmJ1 confers avirulence towards all three B. juncea cultivars tested, suggesting that the gene may confer species-specific avirulence activity.
PLOS Pathogens | 2012
Rohan G. T. Lowe; Barbara J. Howlett
Fungi occupy a myriad of niches. They can be free-living (indifferent) as saprophytes recycling nutrients in the natural environment and/or have a range of relationships (affectionate and deceitful) with insect, animal, or plant hosts. Interactions with plants can be a continuum and range from obligate biotrophy where fungi cannot be cultured outside living hosts to necrotrophy where fungi kill and live on released nutrients. Biotrophic fungi need to avoid or suppress defence responses. They include symbionts, which confer a benefit to the host, and pathogens, which can cause devastating diseases such as stem rust, which threatens production of wheat worldwide [1]. Mycorrhizae colonise roots of >80% of land plants and are symbiotic, increasing nitrogen and phosphorus uptake from the soil, while feeding on sugars from the host photosynthate. Secreted proteins are on the front line of host–fungal interactions, and a particular class, effectors, is a hot topic. Here, we examine a range of fungi and consider their complement of secreted proteins (secretome) and roles of effectors in fungal lifestyles.
PLOS ONE | 2014
Rohan G. T. Lowe; Andrew Cassin; Jonathan Grandaubert; Bethany L. Clark; Angela P. Van de Wouw; Thierry Rouxel; Barbara J. Howlett
Leptosphaeria maculans ‘brassicae’ is a damaging fungal pathogen of canola (Brassica napus), causing lesions on cotyledons and leaves, and cankers on the lower stem. A related species, L. biglobosa ‘canadensis’, colonises cotyledons but causes few stem cankers. We describe the complement of genes encoding carbohydrate-active enzymes (CAZys) and peptidases of these fungi, as well as of four related plant pathogens. We also report dual-organism RNA-seq transcriptomes of these two Leptosphaeria species and B. napus during disease. During the first seven days of infection L. biglobosa ‘canadensis’, a necrotroph, expressed more cell wall degrading genes than L. maculans ‘brassicae’, a hemi-biotroph. L. maculans ‘brassicae’ expressed many genes in the Carbohydrate Binding Module class of CAZy, particularly CBM50 genes, with potential roles in the evasion of basal innate immunity in the host plant. At this time, three avirulence genes were amongst the top 20 most highly upregulated L. maculans ‘brassicae’ genes in planta. The two fungi had a similar number of peptidase genes, and trypsin was transcribed at high levels by both fungi early in infection. L. biglobosa ‘canadensis’ infection activated the jasmonic acid and salicylic acid defence pathways in B. napus, consistent with defence against necrotrophs. L. maculans ‘brassicae’ triggered a high level of expression of isochorismate synthase 1, a reporter for salicylic acid signalling. L. biglobosa ‘canadensis’ infection triggered coordinated shutdown of photosynthesis genes, and a concomitant increase in transcription of cell wall remodelling genes of the host plant. Expression of particular classes of CAZy genes and the triggering of host defence and particular metabolic pathways are consistent with the necrotrophic lifestyle of L. biglobosa ‘canadensis’, and the hemibiotrophic life style of L. maculans ‘brassicae’.
Fungal Genetics and Biology | 2008
Rohan G. T. Lowe; Maryn Lord; Kasia Rybak; Robert D. Trengove; Richard P. Oliver; Peter S. Solomon
A non-targeted metabolomics approach was used to identify significant changes in metabolism upon exposure of the wheat pathogen Stagonospora nodorum to 0.5M NaCl. The polyol arabitol, and to a lesser extent glycerol, was found to accumulate in response to the osmotic stress treatment. Amino acid synthesis was strongly down-regulated whilst mannitol levels were unaffected. A reverse genetic approach was undertaken to dissect the role of arabitol metabolism during salt stress. Strains of S. nodorum lacking a gene encoding an l-arabitol dehydrogenase (abd1), a xylitol dehydrogenase (xdh1) and a double-mutant lacking both genes (abd1xdh1) were exposed to salt and the intracellular metabolites analysed. Arabitol levels were significantly up-regulated upon salt stress in the xdh1 strains but were significantly lower than the wild-type. Arabitol was not significantly different in either the abd1 or the abd1xdh1 strains during osmotic stress but the concentration of glycerol was significantly higher indicating a compensatory mechanism in operation. Genome sequence analysis identified a second possible enzyme capable of synthesizing arabitol explaining the basal level of arabitol present in the abd1xdh1 strains. This study identified that arabitol is the primary compatible solute in S. nodorum but in-built levels of redundancy are present allowing the fungus to tolerate osmotic stress.
Frontiers in Plant Science | 2015
Rohan G. T. Lowe; Owen C McCorkelle; Mark R. Bleackley; Christine Collins; Pierre Faou; Suresh Mathivanan; Marilyn A. Anderson
The plant pathogenic fungus Fusarium graminearum (Fgr) creates economic and health risks in cereals agriculture. Fgr causes head blight (or scab) of wheat and stalk rot of corn, reducing yield, degrading grain quality, and polluting downstream food products with mycotoxins. Fungal plant pathogens must secrete proteases to access nutrition and to breakdown the structural protein component of the plant cell wall. Research into the proteolytic activity of Fgr is hindered by the complex nature of the suite of proteases secreted. We used a systems biology approach comprising genome analysis, transcriptomics and label-free quantitative proteomics to characterize the peptidases deployed by Fgr during growth. A combined analysis of published microarray transcriptome datasets revealed seven transcriptional groupings of peptidases based on in vitro growth, in planta growth, and sporulation behaviors. A high resolution mass spectrometry-based proteomics analysis defined the extracellular proteases secreted by F. graminearum. A meta-classification based on sequence characters and transcriptional/translational activity in planta and in vitro provides a platform to develop control strategies that target Fgr peptidases.
Mycologia | 2015
Barbara J. Howlett; Rohan G. T. Lowe; Stephen J. Marcroft; Angela P. Van de Wouw
The propensity of a fungal pathogen to evolve virulence depends on features of its biology (e.g. mode of reproduction) and of its genome (e.g. amount of repetitive DNA). Populations of Leptosphaeria maculans, a pathogen of Brassica napus (canola), can evolve and overcome disease resistance bred into canola within three years of commercial release of a cultivar. Avirulence effector genes are key fungal genes that are complementary to resistance genes. In L. maculans these genes are embedded within inactivated transposable elements in genomic regions where they are readily mutated or deleted. The risk of resistance breakdown in the field can be minimised by monitoring disease severity of canola cultivars and virulence of fungal populations using high throughput molecular assays and by sowing canola cultivars with different resistance genes in subsequent years. This strategy has been exploited to avert yield losses due to blackleg disease in Australia.
Methods of Molecular Biology | 2012
Rohan G. T. Lowe; Mélanie Jubault; Gail Canning; Martin Urban; Kim E. Hammond-Kosack
In recent years, many Fusarium species have emerged which now threaten the productivity and safety of small grain cereal crops worldwide. During floral infection and post-harvest on stored grains the Fusarium hyphae produce various types of harmful mycotoxins which subsequently contaminate food and feed products. This article focuses specifically on the induction and production of the type B sesquiterpenoid trichothecene mycotoxins. Methods are described which permit in liquid culture the small or large scale production and detection of deoxynivalenol (DON) and its various acetylated derivatives. A wheat (Triticum aestivum L.) ear inoculation assay is also explained which allows the direct comparison of mycotoxin production by species, chemotypes and strains with different growth rates and/or disease-causing abilities. Each of these methods is robust and can be used for either detailed time-course studies or end-point analyses. Various analytical methods are available to quantify the levels of DON, 3A-DON and 15A-DON. Some criteria to be considered when making selections between the different analytical methods available are briefly discussed.