Rohit Chikkaraddy
University of Cambridge
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rohit Chikkaraddy.
Nature | 2016
Rohit Chikkaraddy; Bart de Nijs; Felix Benz; Steven J. Barrow; Oren A. Scherman; Edina Rosta; Angela Demetriadou; Peter T. Fox; Ortwin Hess; Jeremy J. Baumberg
Photon emitters placed in an optical cavity experience an environment that changes how they are coupled to the surrounding light field. In the weak-coupling regime, the extraction of light from the emitter is enhanced. But more profound effects emerge when single-emitter strong coupling occurs: mixed states are produced that are part light, part matter, forming building blocks for quantum information systems and for ultralow-power switches and lasers. Such cavity quantum electrodynamics has until now been the preserve of low temperatures and complicated fabrication methods, compromising its use. Here, by scaling the cavity volume to less than 40 cubic nanometres and using host–guest chemistry to align one to ten protectively isolated methylene-blue molecules, we reach the strong-coupling regime at room temperature and in ambient conditions. Dispersion curves from more than 50 such plasmonic nanocavities display characteristic light–matter mixing, with Rabi frequencies of 300 millielectronvolts for ten methylene-blue molecules, decreasing to 90 millielectronvolts for single molecules—matching quantitative models. Statistical analysis of vibrational spectroscopy time series and dark-field scattering spectra provides evidence of single-molecule strong coupling. This dressing of molecules with light can modify photochemistry, opening up the exploration of complex natural processes such as photosynthesis and the possibility of manipulating chemical bonds.
Science | 2016
Felix Benz; Mikolaj K. Schmidt; Alexander Dreismann; Rohit Chikkaraddy; Yao Zhang; Angela Demetriadou; Cloudy Carnegie; Hamid Ohadi; Bart de Nijs; Ruben Esteban; Javier Aizpurua; Jeremy J. Baumberg
A cool route to nanospectroscopy Confining light to a cavity is often used to enhance the interaction between the light and a particle stored within the cavity. Benz et al. worked with a self-assembled monolayer of biphenyl-4-thiol molecules sandwiched between a gold film and a gold nanoparticle. They used laser irradiation to move atoms in the nanoparticle and produced a “picocavity” that was stable at cryogenic temperatures. The authors were then able to obtain time-dependent Raman spectra from individual molecules. Such subwavelength cavities that can localize light to volumes well below 1 nm3 will enable optical experiments on the atomic scale. Science, this issue p. 726 Strongly subwavelength optical cavities can be used to spectroscopically probe single molecules. Trapping light with noble metal nanostructures overcomes the diffraction limit and can confine light to volumes typically on the order of 30 cubic nanometers. We found that individual atomic features inside the gap of a plasmonic nanoassembly can localize light to volumes well below 1 cubic nanometer (“picocavities”), enabling optical experiments on the atomic scale. These atomic features are dynamically formed and disassembled by laser irradiation. Although unstable at room temperature, picocavities can be stabilized at cryogenic temperatures, allowing single atomic cavities to be probed for many minutes. Unlike traditional optomechanical resonators, such extreme optical confinement yields a factor of 106 enhancement of optomechanical coupling between the picocavity field and vibrations of individual molecular bonds. This work sets the basis for developing nanoscale nonlinear quantum optics on the single-molecule level.
Nature Communications | 2014
Partha Pratim Patra; Rohit Chikkaraddy; Ravi P. N. Tripathi; Arindam Dasgupta; G. V. Pavan Kumar
Single-molecule surface-enhanced Raman scattering (SM-SERS) is one of the vital applications of plasmonic nanoparticles. The SM-SERS sensitivity critically depends on plasmonic hot-spots created at the vicinity of such nanoparticles. In conventional fluid-phase SM-SERS experiments, plasmonic hot-spots are facilitated by chemical aggregation of nanoparticles. Such aggregation is usually irreversible, and hence, nanoparticles cannot be re-dispersed in the fluid for further use. Here, we show how to combine SM-SERS with plasmon polariton-assisted, reversible assembly of plasmonic nanoparticles at an unstructured metal-fluid interface. One of the unique features of our method is that we use a single evanescent-wave optical excitation for nanoparticle assembly, manipulation and SM-SERS measurements. Furthermore, by utilizing dual excitation of plasmons at metal-fluid interface, we create interacting assemblies of metal nanoparticles, which may be further harnessed in dynamic lithography of dispersed nanostructures. Our work will have implications in realizing optically addressable, plasmofluidic, single-molecule detection platforms.
Journal of Physical Chemistry Letters | 2016
Felix Benz; Rohit Chikkaraddy; Andrew Salmon; Hamid Ohadi; Bart de Nijs; Jan Mertens; Cloudy Carnegie; Richard Bowman; Jeremy J. Baumberg
Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.
ACS Photonics | 2016
Anna Lombardi; Angela Demetriadou; Lee Weller; Patrick Andrae; Felix Benz; Rohit Chikkaraddy; Javier Aizpurua; Jeremy J. Baumberg
The near-field and far-field spectral response of plasmonic systems are often assumed to be identical, due to the lack of methods that can directly compare and correlate both responses under similar environmental conditions. We develop a widely tunable optical technique to probe the near-field resonances within individual plasmonic nanostructures that can be directly compared to the corresponding far-field response. In tightly coupled nanoparticle-on-mirror constructs with nanometer-sized gaps we find >40 meV blue-shifts of the near-field compared to the dark-field scattering peak, which agrees with full electromagnetic simulations. Using a transformation optics approach, we show such shifts arise from the different spectral interference between different gap modes in the near- and far-field. The control and tuning of near-field and far-field responses demonstrated here is of paramount importance in the design of optical nanostructures for field-enhanced spectroscopy, as well as to control near-field activity monitored through the far-field of nano-optical devices.
Applied Physics Letters | 2012
Rohit Chikkaraddy; Danveer Singh; G. V. Pavan Kumar
Herein, we report on the experimental observation of light propagation and localization capabilities of end-to-end connected silver nanowire (Ag NW) pairs. By exciting the surface plasmon polaritons at one end of Ag NW pair, we observed relatively intense light emission at the junction and weak light emission at the distal end of the pair. To probe the localization of light at nanowire junction, we captured far-field Raman image of an isolated Ag NW pair adsorbed with rhodamine 6 G and observed enhanced Raman scattering at the nanowire junction. Such nanophotonic modules with light propagation and localization capabilities can be harnessed for multiplexed on-chip plasmonics.
Optics Express | 2015
Felix Benz; Bart de Nijs; Christos Tserkezis; Rohit Chikkaraddy; Daniel O. Sigle; Laurynas Pukenas; Stephen D. Evans; Javier Aizpurua; Jeremy J. Baumberg
We develop an analytic circuit model for coupled plasmonic dimers separated by small gaps that provides a complete account of the optical resonance wavelength. Using a suitable equivalent circuit, it shows how partially conducting links can be treated and provides quantitative agreement with both experiment and full electromagnetic simulations. The model highlights how in the conducting regime, the kinetic inductance of the linkers set the spectral blue-shifts of the coupled plasmon.
Applied Physics Letters | 2013
Rohit Chikkaraddy; Arindam Dasgupta; S. Dutta Gupta; G. V. Pavan Kumar
In this letter, we show how organic molecular waveguides of 1,5-diaminoanthraquinone molecules can be grown on a silica microsphere to obtain microsphere-coupled organic waveguides (MOWs). Using such MOWs, we remotely excite and detect whispering gallery modes (WGMs) of the attached microsphere. Interestingly, these WGMs showed mode-splitting and mode-mixing due to broken azimuthal symmetry of the microsphere. Furthermore, the waveguiding characteristics of MOWs showed a quadrupole intensity pattern as a function of input polarization. The presented geometry can be an excellent test-bed to study fundamental aspects of coupled resonant systems, and their properties can be harnessed in nano- and bio-photonics.
Nano Letters | 2018
Rohit Chikkaraddy; Vladimir Turek; Nuttawut Kongsuwan; Felix Benz; Cloudy Carnegie; Tim van de Goor; Bart de Nijs; Angela Demetriadou; Ortwin Hess; Ulrich F. Keyser; Jeremy J. Baumberg
Fabricating nanocavities in which optically active single quantum emitters are precisely positioned is crucial for building nanophotonic devices. Here we show that self-assembly based on robust DNA-origami constructs can precisely position single molecules laterally within sub-5 nm gaps between plasmonic substrates that support intense optical confinement. By placing single-molecules at the center of a nanocavity, we show modification of the plasmon cavity resonance before and after bleaching the chromophore and obtain enhancements of ≥4 × 103 with high quantum yield (≥50%). By varying the lateral position of the molecule in the gap, we directly map the spatial profile of the local density of optical states with a resolution of ±1.5 nm. Our approach introduces a straightforward noninvasive way to measure and quantify confined optical modes on the nanoscale.
Nature Communications | 2017
Bart de Nijs; Felix Benz; Steven J. Barrow; Daniel O. Sigle; Rohit Chikkaraddy; Aniello Palma; Cloudy Carnegie; Marlous Kamp; Ravishankar Sundararaman; Prineha Narang; Oren A. Scherman; Jeremy J. Baumberg
Nanoparticles attached just above a flat metallic surface can trap optical fields in the nanoscale gap. This enables local spectroscopy of a few molecules within each coupled plasmonic hotspot, with near thousand-fold enhancement of the incident fields. As a result of non-radiative relaxation pathways, the plasmons in such sub-nanometre cavities generate hot charge carriers, which can catalyse chemical reactions or induce redox processes in molecules located within the plasmonic hotspots. Here, surface-enhanced Raman spectroscopy allows us to track these hot-electron-induced chemical reduction processes in a series of different aromatic molecules. We demonstrate that by increasing the tunnelling barrier height and the dephasing strength, a transition from coherent to hopping electron transport occurs, enabling observation of redox processes in real time at the single-molecule level.Plasmons in sub-nm cavities can enable chemical processes within plasmonic hotspots. Here the authors use surface-enhanced Raman spectroscopy to track hot-electron-induced chemical reduction processes in aromatic molecules, thus enabling observation of redox processes at the single-molecule level.