Rohit Ghai
University of Giessen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Rohit Ghai.
Journal of Bacteriology | 2006
Torsten Hain; Christiane Steinweg; Carsten Kuenne; André Billion; Rohit Ghai; Som S. Chatterjee; Eugen Domann; Uwe Kärst; Alexander Goesmann; Thomas Bekel; Daniela Bartels; Olaf Kaiser; Folker Meyer; Alfred Pühler; Bernd Weisshaar; Jürgen Wehland; Chunguang Liang; Thomas Dandekar; Robert Lampidis; Jürgen Kreft; Werner Goebel; Trinad Chakraborty
We present the complete genome sequence of Listeria welshimeri, a nonpathogenic member of the genus Listeria. Listeria welshimeri harbors a circular chromosome of 2,814,130 bp with 2,780 open reading frames. Comparative genomic analysis of chromosomal regions between L. welshimeri, Listeria innocua, and Listeria monocytogenes shows strong overall conservation of synteny, with the exception of the translocation of an F(o)F(1) ATP synthase. The smaller size of the L. welshimeri genome is the result of deletions in all of the genes involved in virulence and of fitness genes required for intracellular survival, transcription factors, and LPXTG- and LRR-containing proteins as well as 55 genes involved in carbohydrate transport and metabolism. In total, 482 genes are absent from L. welshimeri relative to L. monocytogenes. Of these, 249 deletions are commonly absent in both L. welshimeri and L. innocua, suggesting similar genome evolutionary paths from an ancestor. We also identified 311 genes specific to L. welshimeri that are absent in the other two species, indicating gene expansion in L. welshimeri, including horizontal gene transfer. The species L. welshimeri appears to have been derived from early evolutionary events and an ancestor more compact than L. monocytogenes that led to the emergence of nonpathogenic Listeria spp.
BMC Bioinformatics | 2004
Rohit Ghai; Torsten Hain; Trinad Chakraborty
BackgroundAn increasing number of microbial genomes are being sequenced and deposited in public databases. In addition, several closely related strains are also being sequenced in order to understand the genetic basis of diversity and mechanisms that lead to the acquisition of new genetic traits. These exercises have necessitated the requirement for visualizing microbial genomes and performing genome comparisons on a finer scale. We have developed GenomeViz to enable rapid visualization and subsequent comparisons of several microbial genomes in an interactive environment.ResultsHere we describe a program that allows visualization of both qualitative and quantitative information from complete and partially sequenced microbial genomes. Using GenomeViz, data deriving from studies on genomic islands, gene/protein classifications, GC content, GC skew, whole genome alignments, microarrays and proteomics may be plotted. Several genomes can be visualized interactively at the same time from a comparative genomic perspective and publication quality circular genome plots can be created.ConclusionsGenomeViz should allow researchers to perform visualization and comparative analysis of up to eight different microbial genomes simultaneously.
BMC Genomics | 2012
Torsten Hain; Rohit Ghai; André Billion; Carsten Kuenne; Christiane Steinweg; Benjamin Izar; Walid Mohamed; Mobarak Abu Mraheil; Eugen Domann; Silke Schaffrath; Uwe Kärst; Alexander Goesmann; Sebastian Oehm; Alfred Pühler; Rainer Merkl; Sonja Vorwerk; Philippe Glaser; Patricia Garrido; Christophe Rusniok; Carmen Buchrieser; Werner Goebel; Trinad Chakraborty
BackgroundListeria monocytogenes is a food-borne pathogen that causes infections with a high-mortality rate and has served as an invaluable model for intracellular parasitism. Here, we report complete genome sequences for two L. monocytogenes strains belonging to serotype 4a (L99) and 4b (CLIP80459), and transcriptomes of representative strains from lineages I, II, and III, thereby permitting in-depth comparison of genome- and transcriptome -based data from three lineages of L. monocytogenes. Lineage III, represented by the 4a L99 genome is known to contain strains less virulent for humans.ResultsThe genome analysis of the weakly pathogenic L99 serotype 4a provides extensive evidence of virulence gene decay, including loss of several important surface proteins. The 4b CLIP80459 genome, unlike the previously sequenced 4b F2365 genome harbours an intact inlB invasion gene. These lineage I strains are characterized by the lack of prophage genes, as they share only a single prophage locus with other L. monocytogenes genomes 1/2a EGD-e and 4a L99. Comparative transcriptome analysis during intracellular growth uncovered adaptive expression level differences in lineages I, II and III of Listeria, notable amongst which was a strong intracellular induction of flagellar genes in strain 4a L99 compared to the other lineages. Furthermore, extensive differences between strains are manifest at levels of metabolic flux control and phosphorylated sugar uptake. Intriguingly, prophage gene expression was found to be a hallmark of intracellular gene expression. Deletion mutants in the single shared prophage locus of lineage II strain EGD-e 1/2a, the lma operon, revealed severe attenuation of virulence in a murine infection model.ConclusionComparative genomics and transcriptome analysis of L. monocytogenes strains from three lineages implicate prophage genes in intracellular adaptation and indicate that gene loss and decay may have led to the emergence of attenuated lineages.
Bioinformatics | 2006
André Billion; Rohit Ghai; Trinad Chakraborty; Torsten Hain
UNLABELLEDnThe analysis of protein function is a challenge and a major bottleneck towards well-annotated and analysed microbial genomes. In particular, bacterial surface proteins present an opportunity for pharmacological intervention and vaccine development. We present Augur, an automatic prediction pipeline that integrates major surface prediction algorithms and enables comparative analysis, classification and visualization for gram-positive bacteria on a genomic scale.nnnAVAILABILITYnhttp://bioinfo.mikrobio.med.uni-giessen.de/augur
Bioinformatics | 2007
Carsten Kuenne; Rohit Ghai; Trinad Chakraborty; Torsten Hain
UNLABELLEDnIn order to understand and interpret phylogenetic and functional relationships between multiple prokaryotic species, qualitative and quantitative data must be correlated and displayed. GECO allows linear visualization of multiple genomes using a client/server based approach by dynamically creating .png- or .pdf-formatted images. It is able to display ortholog relations calculated using BLASTCLUST by color coding ortholog representations. Irregularities on the genomic level can be identified by anomalous G/C composition. Thus, this software will enable researchers to detect horizontally transferred genes, pseudogenes and insertions/deletions in related microbial genomes.nnnAVAILABILITYnhttp://bioinfo.mikrobio.med.uni-giessen.de/geco2/GecoMainServlet
Journal of Bacteriology | 2010
Christiane Steinweg; Carsten Kuenne; André Billion; Mobarak Abu Mraheil; Eugen Domann; Rohit Ghai; Sukhadeo B. Barbuddhe; Uwe Kärst; Alexander Goesmann; Alfred Pühler; Bernd Weisshaar; Jürgen Wehland; Robert Lampidis; Jürgen Kreft; Werner Goebel; Trinad Chakraborty; Torsten Hain
We report the complete and annotated genome sequence of the nonpathogenic Listeria seeligeri SLCC3954 serovar 1/2b type strain harboring the smallest completely sequenced genome of the genus Listeria.
Applied and Environmental Microbiology | 2008
Torsten Hain; Sonja Otten; Ulrich von Both; Som S. Chatterjee; Ulrike Technow; André Billion; Rohit Ghai; Walid Mohamed; Eugen Domann; Trinad Chakraborty
ABSTRACT Bacterial artificial chromosome (BAC) vectors are important tools for microbial genome research. We constructed a novel BAC vector, pUvBBAC, for replication in both gram-negative and gram-positive bacterial hosts. The pUvBBAC vector was used to generate a BAC library for the facultative intracellular pathogen Listeria monocytogenes EGD-e. The library had insert sizes ranging from 68 to 178 kb. We identified two recombinant BACs from the L. monocytogenes pUvBBAC library that each contained the entire virulence gene cluster (vgc) of L. monocytogenes and transferred them to a nonpathogenic Listeria innocua strain. Recombinant L. innocua strains harboring pUvBBAC+vgc1 and pUvBBAC+vgc2 produced the vgc-specific listeriolysin (LLO) and actin assembly protein ActA and represent the first reported cloning of the vgc locus in its entirety. The use of the novel broad-host-range BAC vector pUvBBAC extends the versatility of this technology and provides a powerful platform for detailed functional genomics of gram-positive bacteria as well as its use in explorative functional metagenomics.
BMC Microbiology | 2010
Svetlin Tchatalbachev; Rohit Ghai; Hamid Hossain; Trinad Chakraborty
BackgroundWe infected freshly isolated human peripheral monocytes with live bacteria of three clinically important gram-positive bacterial species, Staphylococcus aureus, Streptococcus pneumoniae and Listeria monocytogenes and studied the ensuing early transcriptional response using expression microarrays. Thus the observed response was unbiased by signals originating from other helper and effector cells of the host and was not limited to induction by solitary bacterial constituents.ResultsActivation of monocytes was demonstrated by the upregulation of chemokine rather than interleukin genes except for the prominent expression of interleukin 23, marking it as the early lead cytokine. This activation was accompanied by cytoskeleton rearrangement signals and a general anti-oxidative stress and anti-apoptotic reaction. Remarkably, the expression profiles also provide evidence that monocytes participate in the regulation of angiogenesis and endothelial function in response to these pathogens.ConclusionRegardless of the invasion properties and survival mechanisms of the pathogens used, we found that the early response comprised of a consistent and common response. The common response was hallmarked by the upregulation of interleukin 23, a rather unexpected finding regarding Listeria infection, as this cytokine has been linked primarily to the control of extracellular bacterial dissemination.
Advances in Experimental Medicine and Biology | 2009
Tanja Langefeld; Walid Mohamed; Rohit Ghai; Trinad Chakrabotty
The innate immune system forms the first line of defense against pathogens. The Toll-like receptors and the Nod-like receptors are at the forefront of both extracellular and intracellular pathogen recognition. They recognize the most conserved structures of microbes and initiate the response to infection. In addition to the microbial stimuli, they are now also being implicated in the recognition of danger-associated stimuli, making them pivotal in disorders unrelated to microbial pathogenesis. Toll-like receptors and the Nod-like receptors share commonalities in structure, ligands and downstream signalling but they differ in their localization, and extent of influence on a wide variety of cellular processes including apoptosis. Here we discuss the common ligand recognition and signalling modules in both these classes of receptors.
Methods of Molecular Biology | 2007
Rohit Ghai; Trinad Chakraborty
Recent years have brought a tremendous increase in the amount of sequence data from various bacterial genome sequencing projects, an increase that is projected to accelerate over the next years. Comparative genomics of microbial strains has provided us with unprecedented information to describe a bacterial species and examine for microbial diversity. This has allowed us to define core genomes based on genes commonly present in all strains of a species or genus and to identify dispensable regions in the genome harboring genus-, species-, and even strain-specific genes. Nevertheless, the task of organizing and summarizing the data to extract the most informative features remains a challenging yet critical endeavor. Visualization is an effective way of structuring and presenting such information effectively, in a concise and eloquent fashion. The large-scale views unveil commonalities and differences between the genomes that may shed light on their evolutionary relationships and define characteristics that are typical of pathogenicity or other ecological adaptations. We describe GenomeViz, a tool for comparative visualization of bacterial genomes that allows the user to actively create, modify and query a genome plot in a visually compact, user-friendly, and interactive manner.