Roland J. Leigh
University of Leicester
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Roland J. Leigh.
Geophysical Research Letters | 2008
Kevin Tansey; Jean-Marie Grégoire; Pierre Defourny; Roland J. Leigh; Jean-François Pekel; Eric Van Bogaert; Etienne Bartholomé
This paper reports on the development and validation of a new, global, burnt area product. Burnt areas are reported at a resolution of 1 km for seven fire years (2000 to 2007). A modified version of a Global Burnt Area (GBA) 2000 algorithm is used to compute global burnt area. The total area burnt each year (2000-2007) is estimated to be between 3.5 million km 2 and 4.5 million km(2). The total amount of vegetation burnt by cover type according to the Global Land Cover (GLC) 2000 product is reported. Validation was undertaken using 72 Landsat TM scenes was undertaken. Correlation statistics between estimated burnt areas are reported for major vegetation types. The accuracy of this new global data set depends on vegetation type.
Bulletin of the American Meteorological Society | 2015
Sylvia I. Bohnenstengel; Stephen E. Belcher; A. C. Aiken; J. D. Allan; G. Allen; Asan Bacak; Thomas J. Bannan; Janet F. Barlow; David C. S. Beddows; William J. Bloss; Am Booth; Charles Chemel; Omduth Coceal; C. Di Marco; Manvendra K. Dubey; K.H. Faloon; Zoe L. Fleming; Markus Furger; Johanna K. Gietl; R. Graves; David Green; C. S. B. Grimmond; Christos Halios; Jacqueline F. Hamilton; Roy M. Harrison; Mathew R. Heal; Dwayne E. Heard; Carole Helfter; Scott C. Herndon; R.E. Holmes
AbstractAir quality and heat are strong health drivers, and their accurate assessment and forecast are important in densely populated urban areas. However, the sources and processes leading to high concentrations of main pollutants, such as ozone, nitrogen dioxide, and fine and coarse particulate matter, in complex urban areas are not fully understood, limiting our ability to forecast air quality accurately. This paper introduces the Clean Air for London (ClearfLo; www.clearflo.ac.uk) project’s interdisciplinary approach to investigate the processes leading to poor air quality and elevated temperatures.Within ClearfLo, a large multi-institutional project funded by the U.K. Natural Environment Research Council (NERC), integrated measurements of meteorology and gaseous, and particulate composition/loading within the atmosphere of London, United Kingdom, were undertaken to understand the processes underlying poor air quality. Long-term measurement infrastructure installed at multiple levels (street and eleva...
Journal of Geophysical Research | 2015
Thomas J. Bannan; A. Murray Booth; Asan Bacak; Jennifer Muller; Kimberley E. Leather; Michael Le Breton; Benjamin Jones; Dominique E. Young; Hugh Coe; J. D. Allan; S. Visser; Jay G. Slowik; Markus Furger; André S. H. Prévôt; James Lee; Rachel E. Dunmore; J. R. Hopkins; Jacqueline F. Hamilton; Alastair C. Lewis; L. K. Whalley; Thomas Sharp; Daniel Stone; Dwayne E. Heard; Zoe L. Fleming; Roland J. Leigh; Dudley E. Shallcross; Carl J. Percival
The first nitryl chloride (ClNO2) measurements in the UK were made during the summer 2012 ClearfLo campaign with a chemical ionization mass spectrometer, utilizing an I− ionization scheme. Concentrations of ClNO2 exceeded detectable limits (11 ppt) every night with a maximum concentration of 724 ppt. A diurnal profile of ClNO2 peaking between 4 and 5 A.M., decreasing directly after sunrise, was observed. Concentrations of ClNO2 above the detection limit are generally observed between 8 P.M. and 11 A.M. Different ratios of the production of ClNO2:N2O5 were observed throughout with both positive and negative correlations between the two species being reported. The photolysis of ClNO2 and a box model utilizing the Master Chemical Mechanism modified to include chlorine chemistry was used to calculate Cl atom concentrations. Simultaneous measurements of hydroxyl radicals (OH) using low pressure laser-induced fluorescence and ozone enabled the relative importance of the oxidation of three groups of measured VOCs (alkanes, alkenes, and alkynes) by OH radicals, Cl atoms, and O3 to be compared. For the day with the maximum calculated Cl atom concentration, Cl atoms in the early morning were the dominant oxidant for alkanes and, over the entire day, contributed 15%, 3%, and 26% toward the oxidation of alkanes, alkenes, and alkynes, respectively.
Applied Optics | 2006
Roland J. Leigh; Gary K. Corlett; Udo Friess; Paul S. Monks
The development of a new concurrent multiaxis (CMAX) sky viewing spectrometer to monitor rapidly changing urban concentrations of nitrogen dioxide is detailed. The CMAX differential optical absorption spectroscopy (DOAS) technique involves simultaneous spectral imaging of the zenith and off-axis measurements of spatially resolved scattered sunlight. Trace-gas amounts are retrieved from the measured spectra using the established DOAS technique. The potential of the CMAX DOAS technique to derive information on rapidly changing concentrations and the spatial distribution of NO2 in an urban environment is demonstrated. Three example data sets are presented from measurements during 2004 of tropospheric NO2 over Leicester, UK (52.62 degrees N, 1.12 degrees W). The data demonstrate the current capabilities and future potential of the CMAX DOAS method in terms of the ability to measure real-time spatially disaggregated urban NO2.
international geoscience and remote sensing symposium | 2007
Stephen Plummer; Olivier Arino; Franck Ranera; Kevin Tansey; Jing M. Chen; Gérard Dedieu; Hugh Eva; Isidoro Piccolini; Roland J. Leigh; Geert Borstlap; Bart Beusen; Walter Heyns; Riccardo Benedetti
Understanding the spatial and temporal variation in carbon fluxes is essential to constrain models that predict climate change. However, our current knowledge of spatial and temporal patterns is uncertain, particularly over land. The ESA GLOBCARBON project aims to generate estimates of at-land products quasi-independent of the original Earth Observation source for use in Dynamic Global Vegetation Models, a central component of the ESSP Global Carbon Project. The service features global estimates of: burned area, fAPARS, LAI and vegetation growth cycle. The demonstrator focused on six complete years, from 1998 to 2003 when overlap exists between ESA Earth Observation sensors (ATSR-2, AATSR and MERIS) and VEGETATION but has recently been extended to 2007. This paper presents early results of the first re-processing in the GLOBCARBON project, which was undertaken after comments from users involved in beta testing.
Sensors | 2017
Philip J. D. Peterson; Amrita Aujla; Kirsty H. Grant; Alex G. Brundle; Martin R. Thompson; Joshua Vande Hey; Roland J. Leigh
The potential of inexpensive Metal Oxide Semiconductor (MOS) gas sensors to be used for urban air quality monitoring has been the topic of increasing interest in the last decade. This paper discusses some of the lessons of three years of experience working with such sensors on a novel instrument platform (Small Open General purpose Sensor (SOGS)) in the measurement of atmospheric nitrogen dioxide and ozone concentrations. Analytic methods for increasing long-term accuracy of measurements are discussed, which permit nitrogen dioxide measurements with 95% confidence intervals of 20.0 μg m−3 and ozone precision of 26.8 μg m−3, for measurements over a period one month away from calibration, averaged over 18 months of such calibrations. Beyond four months from calibration, sensor drift becomes significant, and accuracy is significantly reduced. Successful calibration schemes are discussed with the use of controlled artificial atmospheres complementing deployment on a reference weather station exposed to the elements. Manufacturing variation in the attributes of individual sensors are examined, an experiment possible due to the instrument being equipped with pairs of sensors of the same kind. Good repeatability (better than 0.7 correlation) between individual sensor elements is shown. The results from sensors that used fans to push air past an internal sensor element are compared with mounting the sensors on the outside of the enclosure, the latter design increasing effective integration time to more than a day. Finally, possible paths forward are suggested for improving the reliability of this promising sensor technology for measuring pollution in an urban environment.
Environment International | 2017
Gary O'Donovan; Yogini Chudasama; Samuel Grocock; Roland J. Leigh; Alice M. Dalton; Laura J. Gray; Thomas Yates; Charlotte L. Edwardson; Sian Hill; Joe Henson; David R. Webb; Kamlesh Khunti; Melanie J. Davies; Andrew Jones; Danielle H. Bodicoat; Alan A. Wells
BACKGROUND Observational evidence suggests there is an association between air pollution and type 2 diabetes; however, there is high risk of bias. OBJECTIVE To investigate the association between air pollution and type 2 diabetes, while reducing bias due to exposure assessment, outcome assessment, and confounder assessment. METHODS Data were collected from 10,443 participants in three diabetes screening studies in Leicestershire, UK. Exposure assessment included standard, prevailing estimates of outdoor nitrogen dioxide and particulate matter concentrations in a 1×1km area at the participants home postcode. Three-year exposure was investigated in the primary analysis and one-year exposure in a sensitivity analysis. Outcome assessment included the oral glucose tolerance test for type 2 diabetes. Confounder assessment included demographic factors (age, sex, ethnicity, smoking, area social deprivation, urban or rural location), lifestyle factors (body mass index and physical activity), and neighbourhood green space. RESULTS Nitrogen dioxide and particulate matter concentrations were associated with type 2 diabetes in unadjusted models. There was no statistically significant association between nitrogen dioxide concentration and type 2 diabetes after adjustment for demographic factors (odds: 1.08; 95% CI: 0.91, 1.29). The odds of type 2 diabetes was 1.10 (95% CI: 0.92, 1.32) after further adjustment for lifestyle factors and 0.91 (95% CI: 0.72, 1.16) after yet further adjustment for neighbourhood green space. The associations between particulate matter concentrations and type 2 diabetes were also explained away by demographic factors. There was no evidence of exposure definition bias. CONCLUSIONS Demographic factors seemed to explain the association between air pollution and type 2 diabetes in this cross-sectional study. High-quality longitudinal studies are needed to improve our understanding of the association.
Environmental Pollution | 2017
Antoine P. R. Jeanjean; John Gallagher; Paul S. Monks; Roland J. Leigh
Air pollution continues to be a problem in the urban environment. A range of different pollutant mitigation strategies that promote dispersion and deposition exist, but there is little evidence with respect to their comparative performance from both an environmental and economic perspective. This paper focuses on examining different NO2 mitigation strategies such as trees, buildings facades coated with photocatalytic paint and solid barriers in Oxford Street in London. The case study findings will support ranking the environmental and economic impacts of these different strategies to improve personal exposure conditions on the footpath and on the road in a real urban street canyon. CFD simulations of airflow and NO2 dispersion in Oxford Street in London were undertaken using the OpenFOAM software platform with the k-ε model, taking into account local prevailing wind conditions. Trees are shown to be the most cost-effective strategy, with a small reduction in NO2 concentrations of up to 0.7% on the road. However, solid barriers with and without the application of photocatalytic paint and an innovative material (20 times more expensive than trees) can improve air quality on the footpaths more substantially, up to 7.4%, yet this has a significant detrimental impact on NO2 concentrations (≤23.8%) on the road. Photocatalytic paint on building surfaces presented a minimal environmental reductions (1.2%) and economic (>100 times more expensive than trees) mitigation strategy. The findings recognised the differences between footpath and road concentrations occurred and that a focused examination of three pollution hotspots can provide more cost effective pollution mitigation. This study considers how a number of pollutant mitigation measures can be applied in a single street canyon and demonstrates the strengths and weaknesses of these strategies from economic and environmental perspectives. Further research is required to extrapolate the findings presented here to different street geometries.
Clinical & Experimental Allergy | 2018
Lucy Chambers; Joanne Finch; Karen Edwards; Antoine P. R. Jeanjean; Roland J. Leigh; Sherif Gonem
There is evidence that air pollution increases the risk of asthma hospitalizations and healthcare utilization, but the effects on day‐to‐day asthma control are not fully understood.
Aerosol Science and Technology | 2018
Joshua D. Vande Hey; Hannah Sonderfeld; Antoine P. R. Jeanjean; Rikesh Panchal; Roland J. Leigh; Mark A. Allen; Mark Dawson; Paul S. Monks
Abstract Poor air quality inside vehicles and its impact on human health is an issue requiring attention, with drivers and passengers facing levels of air pollution potentially greater than street-side outdoor air. This paper assesses the potential effectiveness of a car cabin filtration system to remove fine particulate matter PM2.5 and improve air quality for car passengers. The study was conducted as a practical evaluation coupled to a model implementation. First, the effectiveness of PM2.5 filter material was investigated in a chamber experiment under a range of environmental and loading conditions using a realistic automotive auxiliary scrubber. Second, implementation of such a system was evaluated in a full air flow 3D computational fluid dynamical model configured for a realistic cabin and ventilation system, and related to the chamber results through a simple decay model. Additionally, performance of low-cost dust sensors was evaluated as potential cabin monitoring devices. The experiment and modeling support the feasibility of a robust system which could be integrated into automotive designs in a straightforward manner. Results suggest that an auxiliary scrubber in the rear of the cabin alone would provide suboptimal performance, but that by incorporating a PM2.5 filter into the main air handling system, cabin PM2.5 concentrations could be reduced from 100 µg m−3 to less than 25 µg m−3 in 100 s and to 5 µg m−3 in 250 s. A health impact assessment for hypothetical occupational driver populations using such technology long term showed considerable reductions in indicative PM2.5 attributable mortality. Copyright