Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland M. Schaefer is active.

Publication


Featured researches published by Roland M. Schaefer.


Journal of Clinical Investigation | 2005

The matrix component biglycan is proinflammatory and signals through Toll-like receptors 4 and 2 in macrophages

Liliana Schaefer; Andrea Babelova; Eva Kiss; Heinz Hausser; Martina Baliova; Miroslava Krzyzankova; Gunther Marsche; Marian F. Young; Daniel Mihalik; Martin Götte; Ernst Malle; Roland M. Schaefer; Hermann Josef Gröne

Biglycan, a small leucine-rich proteoglycan, is a ubiquitous ECM component; however, its biological role has not been elucidated in detail. Here we show that biglycan acts in macrophages as an endogenous ligand of TLR4 and TLR2, which mediate innate immunity, leading to rapid activation of p38, ERK, and NF-kappaB and thereby stimulating the expression of TNF-alpha and macrophage inflammatory protein-2 (MIP-2). In agreement, the stimulatory effects of biglycan are significantly reduced in TLR4-mutant (TLR4-M), TLR2-/-, and myeloid differentiation factor 88-/- (MyD88-/-) macrophages and completely abolished in TLR2-/-/TLR4-M macrophages. Biglycan-null mice have a considerable survival benefit in LPS- or zymosan-induced sepsis due to lower levels of circulating TNF-alpha and reduced infiltration of mononuclear cells in the lung, which cause less end-organ damage. Importantly, when stimulated by LPS-induced proinflammatory factors, macrophages themselves are able to synthesize biglycan. Thus, biglycan, upon release from the ECM or from macrophages, can boost inflammation by signaling through TLR4 and TLR2, thereby enhancing the synthesis of TNF-alpha and MIP-2. Our results provide evidence for what is, to our knowledge, a novel role of the matrix component biglycan as a signaling molecule and a crucial proinflammatory factor. These findings are potentially relevant for the development of new strategies in the treatment of sepsis.


Journal of Biological Chemistry | 2009

Biglycan, a Danger Signal That Activates the NLRP3 Inflammasome via Toll-like and P2X Receptors

Andrea Babelova; Kristin Moreth; Wasiliki Tsalastra-Greul; Jinyang Zeng-Brouwers; Oliver Eickelberg; Marian F. Young; Peter Bruckner; Josef Pfeilschifter; Roland M. Schaefer; Hermann Josef Gröne; Liliana Schaefer

The role of endogenous inducers of inflammation is poorly understood. To produce the proinflammatory master cytokine interleukin (IL)-1β, macrophages need double stimulation with ligands to both Toll-like receptors (TLRs) for IL-1β gene transcription and nucleotide-binding oligomerization domain-like receptors for activation of the inflammasome. It is particularly intriguing to define how this complex regulation is mediated in the absence of an infectious trigger. Biglycan, a ubiquitous leucine-rich repeat proteoglycan of the extracellular matrix, interacts with TLR2/4 on macrophages. The objective of this study was to define the role of biglycan in the synthesis and activation of IL-1β. Here we show that in macrophages, soluble biglycan induces the NLRP3/ASC inflammasome, activating caspase-1 and releasing mature IL-1β without the need for additional costimulatory factors. This is brought about by the interaction of biglycan with TLR2/4 and purinergic P2X4/P2X7 receptors, which induces receptor cooperativity. Furthermore, reactive oxygen species formation is involved in biglycan-mediated activation of the inflammasome. By signaling through TLR2/4, biglycan stimulates the expression of NLRP3 and pro-IL-1β mRNA. Both in a model of non-infectious inflammatory renal injury (unilateral ureteral obstruction) and in lipopolysaccharide-induced sepsis, biglycan-deficient mice displayed lower levels of active caspase-1 and mature IL-1β in the kidney, lung, and circulation. Our results provide evidence for direct activation of the NLRP3 inflammasome by biglycan and describe a fundamental paradigm of how tissue stress or injury is monitored by innate immune receptors detecting the release of the extracellular matrix components and turning such a signal into a robust inflammatory response.


Cell and Tissue Research | 2010

Proteoglycans: from structural compounds to signaling molecules

Liliana Schaefer; Roland M. Schaefer

Our knowledge of proteoglycan biology has significantly expanded over the past decade with the discovery of a host of new members of this multifunctional family leading to their present classification into three major categories: (1) small leucine-rich proteoglycans, 2) modular proteoglycans, and 3) cell-surface proteoglycans. In addition to being structural proteins, proteoglycans play a major role in signal transduction with regulatory functions in various cellular processes. Being mostly extracellular, they are upstream of many signaling cascades and are capable of affecting intracellular phosphorylation events and modulating distinct pathways, including those driven by bone morphogenetic protein/transforming growth factor superfamily members, receptor tyrosine kinases, the insulin-like growth factor-I receptor, and Toll-like receptors. Mechanistic insights into the molecular and cellular functions of proteoglycans have revealed both the sophistication of these regulatory proteins and the challenges that remain in uncovering the entirety of their biological functions. This review aims to summarize the multiple functions of proteoglycans with special emphasis on their intricate composition and the newly described signaling events in which these molecules play a key role.


Science Signaling | 2011

Signaling by the Matrix Proteoglycan Decorin Controls Inflammation and Cancer Through PDCD4 and MicroRNA-21

Rosetta Merline; Kristin Moreth; Janet Beckmann; Madalina V. Nastase; Jinyang Zeng-Brouwers; J.G. Tralhão; Patricia Lemarchand; Josef Pfeilschifter; Roland M. Schaefer; Renato V. Iozzo; Liliana Schaefer

A component of the extracellular matrix promotes inflammatory responses in sepsis and in tumors. Boosting Inflammation Components of the extracellular matrix have structural roles, but various stresses can induce the release of soluble fragments of these components that can participate in signaling pathways. Merline et al. showed that the soluble form of the proteoglycan decorin promoted inflammatory activity by attenuating the release of anti-inflammatory factors and by activating receptors that trigger the production of proinflammatory mediators. Septic patients showed increased plasma concentrations of decorin, and mice lacking decorin showed increased production of anti-inflammatory factors and decreased production of proinflammatory factors during sepsis. Injecting established tumors in mice with an adenovirus expressing decorin resulted in reduced tumor growth. Thus, treatments that decrease decorin abundance could be used to calm inflammation during sepsis, whereas those that increase decorin abundance might be of clinical use in reducing tumor growth. The mechanisms linking immune responses and inflammation with tumor development are not well understood. Here, we show that the soluble form of the extracellular matrix proteoglycan decorin controls inflammation and tumor growth through PDCD4 (programmed cell death 4) and miR-21 (microRNA-21) by two mechanisms. First, decorin acted as an endogenous ligand of Toll-like receptors 2 and 4 and stimulated production of proinflammatory molecules, including PDCD4, in macrophages. Second, decorin prevented translational repression of PDCD4 by decreasing the activity of transforming growth factor–β1 and the abundance of oncogenic miR-21, a translational inhibitor of PDCD4. Moreover, increased PDCD4 abundance led to decreased release of the anti-inflammatory cytokine interleukin-10, thereby making the cytokine profile more proinflammatory. This pathway operates in both pathogen-mediated and sterile inflammation, as shown here for sepsis and growth retardation of established tumor xenografts, respectively. Decorin was an early response gene evoked by septic inflammation, and protein concentrations of decorin were increased in the plasma of septic patients and mice. In cancer, decorin reduced the abundance of anti-inflammatory molecules and increased that of proinflammatory molecules, thereby shifting the immune response to a proinflammatory state associated with reduced tumor growth. Thus, by stimulating proinflammatory PDCD4 and decreasing the abundance of miR-21, decorin signaling boosts inflammatory activity in sepsis and suppresses tumor growth.


American Journal of Pathology | 2002

Absence of Decorin Adversely Influences Tubulointerstitial Fibrosis of the Obstructed Kidney by Enhanced Apoptosis and Increased Inflammatory Reaction

Liliana Schaefer; Katarina Macakova; Igor Raslik; Miroslava Micegova; Hermann Josef Gröne; Elke Schönherr; Horst Robenek; Frank Echtermeyer; Susanne Grässel; Peter Bruckner; Roland M. Schaefer; Renato V. Iozzo; Hans Kresse

Decorin, a small dermatan-sulfate proteoglycan, participates in extracellular matrix assembly and influences directly and indirectly cell behavior via interactions with signaling membrane receptors and transforming growth factor (TGF)-beta. We have therefore compared the development of tubulointerstitial kidney fibrosis in wild-type (WT) and decorin-/- mice in the model of unilateral ureteral obstruction. Without obstruction, kidneys from decorin-/- mice did not differ in any aspect from their WT counterparts. However, already 12 hours after obstruction decorin-/- animals showed lower levels of p27(KIP1) and soon thereafter a more pronounced up-regulation and activation of initiator and effector caspases followed by enhanced apoptosis of tubular epithelial cells. Later, a higher increase of TGF-beta1 became apparent. After 7 days, there was an up to 15-fold transient up-regulation of the related proteoglycan biglycan, which was mainly caused by the appearance of biglycan-expressing mononuclear cells. Other small proteoglycans showed no similar response. Because of enhanced degradation of type I collagen, end-stage kidneys from decorin-/- animals were more atrophic than WT kidneys. These data suggest that decorin exerts beneficial effects on tubulointerstitial fibrosis, primarily by influencing the expression of a key cyclin-dependent kinase inhibitor and by limiting the degree of apoptosis, mononuclear cell infiltration, tubular atrophy, and expression of TGF-beta1.


Journal of Cell Communication and Signaling | 2009

The matricellular functions of small leucine-rich proteoglycans (SLRPs)

Rosetta Merline; Roland M. Schaefer; Liliana Schaefer

The small leucine-rich proteoglycans (SLRPs) are biologically active components of the extracellular matrix (ECM), consisting of a protein core with leucine rich-repeat (LRR) motifs covalently linked to glycosaminoglycan (GAG) side chains. The diversity in composition resulting from the various combinations of protein cores substituted with one or more GAG chains along with their pericellular localization enables SLRPs to interact with a host of different cell surface receptors, cytokines, growth factors, and other ECM components, leading to modulation of cellular functions. SLRPs are capable of binding to: (i) different types of collagens, thereby regulating fibril assembly, organization, and degradation; (ii) Toll-like receptors (TLRs), complement C1q, and tumor necrosis factor-alpha (TNFα), regulating innate immunity and inflammation; (iii) epidermal growth factor receptor (EGF-R), insulin-like growth factor receptor (IGF-IR), and c-Met, influencing cellular proliferation, survival, adhesion, migration, tumor growth and metastasis as well as synthesis of other ECM components; (iv) low-density lipoprotein receptor-related protein (LRP-1) and TGF-β, modulating cytokine activity and fibrogenesis; and (v) growth factors such as bone morphogenic protein (BMP-4) and Wnt-I-induced secreted protein-1 (WISP-1), controlling cell proliferation and differentiation. Thus, the ability of SLRPs, as ECM components, to directly or indirectly regulate cell-matrix crosstalk, resulting in the modulation of various biological processes, aptly qualifies these compounds as matricellular proteins.


Journal of Clinical Investigation | 2010

The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis

Kristin Moreth; Rebekka Brodbeck; Andrea Babelova; Norbert Gretz; Tilmann Spieker; Jinyang Zeng-Brouwers; Josef Pfeilschifter; Marian F. Young; Roland M. Schaefer; Liliana Schaefer

CXCL13 is a key B cell chemoattractant and marker of disease activity in patients with SLE; however, the mechanism of its induction has not been identified yet. Here, we have shown that the proteoglycan biglycan triggers CXCL13 expression via TLR2/4 in macrophages and dendritic cells. In vivo, levels of biglycan were markedly elevated in the plasma and kidneys of human SLE patients and lupus-prone (MRL/lpr) mice. Overexpression of soluble biglycan in MRL/lpr mice raised plasma and renal levels of CXCL13 and caused accumulation of B cells with an enhanced B1/B cell ratio in the kidney, worsening of organ damage, and albuminuria. Importantly, biglycan also triggered CXCL13 expression and B cell infiltration in the healthy kidney. Conversely, biglycan deficiency improved systemic and renal outcome in lupus-prone mice, with lower levels of autoantibodies, less enlargement of the spleen and lymph nodes, and reduction in renal damage and albuminuria. This correlated with a marked decline in circulating and renal CXCL13 and a reduction in the number of B cells in the kidney. Collectively, our results describe what we believe to be a novel mechanism for the regulation of CXCL13 by biglycan, a host-derived ligand for TLR2/4. Blocking biglycan-TLR2/4 interactions might be a promising strategy for the management of SLE and other B cell-mediated inflammatory disease entities.


The FASEB Journal | 2001

Small proteoglycans in human diabetic nephropathy: discrepancy between glomerular expression and protein accumulation of decorin, biglycan, lumican, and fibromodulin

Liliana Schaefer; Igor Raslik; Hermann Josef Gröne; Elke Schönherr; Katarina Macakova; Jana Ugorcakova; Siegmund Budny; Roland M. Schaefer; Hans Kresse

Small leucine‐rich proteoglycans (SLRPs), for example, decorin, biglycan, fibromodulin, and lumican, are extracellular matrix organizers and binding partners of TGF‐β. Decorin is also involved in growth control and angiogenesis. Hence, these proteoglycans are likely of importance in the pathogenesis of diabetic glomerulosclerosis. In normal kidney, SLRPs were preferentially expressed in the tubulointerstitium. Weak expression occurred in the mesangial matrix. Biglycan was expressed by glomerular endothelial cells and, together with fibromodulin, by distal tubular cells and in collecting ducts. In all stages of diabetic nephropathy, there was a marked up‐regulation of the proteoglycans in tubulointerstitium and glomeruli. Decorin and lumican became expressed in tubuli. However, in glomeruli, overexpression was not mirrored by local proteoglycan accumulation except in advanced nephropathy. In severe glomerulosclerosis, increased decorin concentrations were found in plasma and urine, and urinary TGF‐β/decorin complexes could be demonstrated indirectly. The failure to detect an increased glomerular proteoglycan quantity during the development of nephropathy could be explained by assuming that they are secreted into the mesangial matrix, but cleared via the vasculature or the urinary tract, in part as complexes with TGF‐β. They could thereby counteract the vicious circle being characterized by increased TGF‐β production and increased matrix deposition in diabetic nephropathy.


Diabetologia | 2005

Glomerular expression of thrombospondin-1, transforming growth factor beta and connective tissue growth factor at different stages of diabetic nephropathy and their interdependent roles in mesangial response to diabetic stimuli.

Nadia Abdel Wahab; Liliana Schaefer; Benjamin S. Weston; O. Yiannikouris; A. Wright; Andrea Babelova; Roland M. Schaefer; Roger M. Mason

Aims/hypothesisWe quantified the glomerular expression of thrombospondin-1 (THBS1, also known as TSP-1), transforming growth factor beta 1 (TGFB1, also known as TGF-β1) and connective tissue growth factor (CTGF) at each stage of diabetic nephropathy. We also examined the roles of THBS1 and CTGF in mediating high-glucose- and glycated-albumin-induced synthesis of the matrix protein, fibronectin, by mesangial cells.MethodsTHBS1, latent and active TGFB1, and CTGF, were detected by immunohistochemistry and in situ hybridisation in biopsies from 19 insulin-dependent diabetic patients with incipient, manifest and advanced diabetic nephropathy, and in 11 control kidneys. Findings were quantified by image analysis. Human mesangial cells were cultured with normal or high glucose, albumin or glycated albumin (Amadori product), +/−THBS1 or CTGF antisense oligonucleotides, or with peptide W, an inhibitor of TGFB1 bioactivation by THBS1. Proteins were measured by western blot analysis or ELISA.ResultsIn glomeruli of normal kidneys, mRNA and protein levels for THBS1, latent-TGFB1 and CTGF were low. They were increased in the incipient stage of diabetic nephropathy, predominantly in mesangial areas, with further increases at later stages of the disease. Little or no active TGFB1 immunostaining was detected prior to manifest diabetic nephropathy. In contrast to high-glucose conditions, increases in fibronectin synthesis that were stimulated by glycated albumin were not dependent on THBS1 activation of latent TGFB1. However, increased fibronectin synthesis in both conditions required CTGF.Conclusions/interpretationIncreased glomerular expression of all three factors occurs from the earliest stage of diabetic nephropathy. In contrast to THBS1, CTGF is required for mesangial synthesis of fibronectin stimulated by high glucose or glycated albumin, and is thus a potential therapeutic target.


American Journal of Nephrology | 1989

Treatment of renal anemia with recombinant human erythropoietin

Roland M. Schaefer; Walter H. Hörl; Shaul G. Massry

This review is to provide a summary of our present knowledge regarding replacement therapy with Recombinant human erythropoietin for the anemia of end-stage renal disease

Collaboration


Dive into the Roland M. Schaefer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Liliana Schaefer

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Teschner

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrea Babelova

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar

Gernot Peter

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge