Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roland Züst is active.

Publication


Featured researches published by Roland Züst.


Nature | 2010

2′- O methylation of the viral mRNA cap evades host restriction by IFIT family members

Stephane Daffis; Kristy J. Szretter; Jill Schriewer; Jianqing Li; Soonjeon Youn; John S. Errett; Tsai-Yu Lin; Stewart W. Schneller; Roland Züst; Hongping Dong; Volker Thiel; Ganes C. Sen; Volker Fensterl; William B. Klimstra; Theodore C. Pierson; R. Mark L. Buller; Michael Gale; Pei Yong Shi; Michael S. Diamond

Cellular messenger RNA (mRNA) of higher eukaryotes and many viral RNAs are methylated at the N-7 and 2′-O positions of the 5′ guanosine cap by specific nuclear and cytoplasmic methyltransferases (MTases), respectively. Whereas N-7 methylation is essential for RNA translation and stability, the function of 2′-O methylation has remained uncertain since its discovery 35 years ago. Here we show that a West Nile virus (WNV) mutant (E218A) that lacks 2′-O MTase activity was attenuated in wild-type primary cells and mice but was pathogenic in the absence of type I interferon (IFN) signalling. 2′-O methylation of viral RNA did not affect IFN induction in WNV-infected fibroblasts but instead modulated the antiviral effects of IFN-induced proteins with tetratricopeptide repeats (IFIT), which are interferon-stimulated genes (ISGs) implicated in regulation of protein translation. Poxvirus and coronavirus mutants that lacked 2′-O MTase activity similarly showed enhanced sensitivity to the antiviral actions of IFN and, specifically, IFIT proteins. Our results demonstrate that the 2′-O methylation of the 5′ cap of viral RNA functions to subvert innate host antiviral responses through escape of IFIT-mediated suppression, and suggest an evolutionary explanation for 2′-O methylation of cellular mRNA: to distinguish self from non-self RNA. Differential methylation of cytoplasmic RNA probably serves as an example for pattern recognition and restriction of propagation of foreign viral RNA in host cells.


Nature Immunology | 2011

Ribose 2′- O -methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5

Roland Züst; Luisa Cervantes-Barragan; Matthias Habjan; Reinhard Maier; Benjamin W. Neuman; John Ziebuhr; Kristy J. Szretter; Susan C. Baker; Winfried Barchet; Michael S. Diamond; Stuart G. Siddell; Burkhard Ludewig; Volker Thiel

The 5′ cap structures of higher eukaryote mRNAs have ribose 2′-O-methylation. Likewise, many viruses that replicate in the cytoplasm of eukaryotes have evolved 2′-O-methyltransferases to autonomously modify their mRNAs. However, a defined biological role for 2′-O-methylation of mRNA remains elusive. Here we show that 2′-O-methylation of viral mRNA was critically involved in subverting the induction of type I interferon. We demonstrate that human and mouse coronavirus mutants lacking 2′-O-methyltransferase activity induced higher expression of type I interferon and were highly sensitive to type I interferon. Notably, the induction of type I interferon by viruses deficient in 2′-O-methyltransferase was dependent on the cytoplasmic RNA sensor Mda5. This link between Mda5-mediated sensing of viral RNA and 2′-O-methylation of mRNA suggests that RNA modifications such as 2′-O-methylation provide a molecular signature for the discrimination of self and non-self mRNA.


PLOS Pathogens | 2007

Coronavirus Non-Structural Protein 1 Is a Major Pathogenicity Factor: Implications for the Rational Design of Coronavirus Vaccines

Roland Züst; Luisa Cervantes-Barragan; Thomas Kuri; Gjon Blakqori; Friedemann Weber; Burkhard Ludewig; Volker Thiel

Attenuated viral vaccines can be generated by targeting essential pathogenicity factors. We report here the rational design of an attenuated recombinant coronavirus vaccine based on a deletion in the coding sequence of the non-structural protein 1 (nsp1). In cell culture, nsp1 of mouse hepatitis virus (MHV), like its SARS-coronavirus homolog, strongly reduced cellular gene expression. The effect of nsp1 on MHV replication in vitro and in vivo was analyzed using a recombinant MHV encoding a deletion in the nsp1-coding sequence. The recombinant MHV nsp1 mutant grew normally in tissue culture, but was severely attenuated in vivo. Replication and spread of the nsp1 mutant virus was restored almost to wild-type levels in type I interferon (IFN) receptor-deficient mice, indicating that nsp1 interferes efficiently with the type I IFN system. Importantly, replication of nsp1 mutant virus in professional antigen-presenting cells such as conventional dendritic cells and macrophages, and induction of type I IFN in plasmacytoid dendritic cells, was not impaired. Furthermore, even low doses of nsp1 mutant MHV elicited potent cytotoxic T cell responses and protected mice against homologous and heterologous virus challenge. Taken together, the presented attenuation strategy provides a paradigm for the development of highly efficient coronavirus vaccines.


PLOS Pathogens | 2011

The SARS-Coronavirus-Host Interactome: Identification of Cyclophilins as Target for Pan-Coronavirus Inhibitors

Susanne Pfefferle; Julia Schöpf; Manfred Kögl; Caroline C. Friedel; Marcel A. Müller; Javier Carbajo-Lozoya; Thorsten Stellberger; Ekatarina von Dall’Armi; Petra Herzog; Stefan Kallies; Daniela Niemeyer; Vanessa Ditt; Thomas Kuri; Roland Züst; Ksenia Pumpor; Rolf Hilgenfeld; Frank Schwarz; Ralf Zimmer; Imke Steffen; Friedemann Weber; Volker Thiel; Georg Herrler; Heinz Jürgen Thiel; Christel Schwegmann-Weßels; Stefan Pöhlmann; Jürgen Haas; Christian Drosten; Albrecht von Brunn

Coronaviruses (CoVs) are important human and animal pathogens that induce fatal respiratory, gastrointestinal and neurological disease. The outbreak of the severe acute respiratory syndrome (SARS) in 2002/2003 has demonstrated human vulnerability to (Coronavirus) CoV epidemics. Neither vaccines nor therapeutics are available against human and animal CoVs. Knowledge of host cell proteins that take part in pivotal virus-host interactions could define broad-spectrum antiviral targets. In this study, we used a systems biology approach employing a genome-wide yeast-two hybrid interaction screen to identify immunopilins (PPIA, PPIB, PPIH, PPIG, FKBP1A, FKBP1B) as interaction partners of the CoV non-structural protein 1 (Nsp1). These molecules modulate the Calcineurin/NFAT pathway that plays an important role in immune cell activation. Overexpression of NSP1 and infection with live SARS-CoV strongly increased signalling through the Calcineurin/NFAT pathway and enhanced the induction of interleukin 2, compatible with late-stage immunopathogenicity and long-term cytokine dysregulation as observed in severe SARS cases. Conversely, inhibition of cyclophilins by cyclosporine A (CspA) blocked the replication of CoVs of all genera, including SARS-CoV, human CoV-229E and -NL-63, feline CoV, as well as avian infectious bronchitis virus. Non-immunosuppressive derivatives of CspA might serve as broad-range CoV inhibitors applicable against emerging CoVs as well as ubiquitous pathogens of humans and livestock.


Journal of Immunology | 2009

Type I IFN-Mediated Protection of Macrophages and Dendritic Cells Secures Control of Murine Coronavirus Infection

Luisa Cervantes-Barragan; Ulrich Kalinke; Roland Züst; Martin König; Boris Reizis; Constantino López-Macías; Volker Thiel; Burkhard Ludewig

The swift production of type I IFNs is one of the fundamental aspects of innate immune responses against viruses. Plasmacytoid dendritic cell-derived type I IFNs are of prime importance for the initial control of highly cytopathic viruses such as the mouse hepatitis virus (MHV). The aim of this study was to determine the major target cell populations of this first wave of type I IFNs. Generation of bone marrow-chimeric mice expressing the type I IFN receptor (IFNAR) on either hemopoietic or non-bone marrow-derived cells revealed that the early control of MHV depended mainly on IFNAR expression on hemopoietic cells. To establish which cell population responds most efficiently to type I IFNs, mice conditionally deficient for the IFNAR on different leukocyte subsets were infected with MHV. This genetic analysis revealed that IFNAR expression on LysM+ macrophages and CD11c+ dendritic cells was most important for the early containment of MHV within secondary lymphoid organs and to prevent lethal liver disease. This study identifies type I IFN-mediated cross-talk between plasmacytoid dendritic cells on one side and macrophages and conventional dendritic cells on the other, as an essential cellular pathway for the control of fatal cytopathic virus infection.


PLOS Pathogens | 2013

Rational Design of a Live Attenuated Dengue Vaccine: 2 '-O-Methyltransferase Mutants Are Highly Attenuated and Immunogenic in Mice and Macaques

Roland Züst; Hongping Dong; Xiao-Feng Li; David C. Chang; Bo Zhang; Thavamalar Balakrishnan; Ying Xiu Toh; Tao Jiang; Shi-Hua Li; Yong Qiang Deng; Brett R. Ellis; Esther M. Ellis; Michael Poidinger; Francesca Zolezzi; Cheng-Feng Qin; Pei Yong Shi; Katja Fink

Dengue virus is transmitted by Aedes mosquitoes and infects at least 100 million people every year. Progressive urbanization in Asia and South-Central America and the geographic expansion of Aedes mosquito habitats have accelerated the global spread of dengue, resulting in a continuously increasing number of cases. A cost-effective, safe vaccine conferring protection with ideally a single injection could stop dengue transmission. Current vaccine candidates require several booster injections or do not provide protection against all four serotypes. Here we demonstrate that dengue virus mutants lacking 2′-O-methyltransferase activity are highly sensitive to type I IFN inhibition. The mutant viruses are attenuated in mice and rhesus monkeys and elicit a strong adaptive immune response. Monkeys immunized with a single dose of 2′-O-methyltransferase mutant virus showed 100% sero-conversion even when a dose as low as 1,000 plaque forming units was administrated. Animals were fully protected against a homologous challenge. Furthermore, mosquitoes feeding on blood containing the mutant virus were not infected, whereas those feeding on blood containing wild-type virus were infected and thus able to transmit it. These results show the potential of 2′-O-methyltransferase mutant virus as a safe, rationally designed dengue vaccine that restrains itself due to the increased susceptibility to the hosts innate immune response.


Journal of Virology | 2008

Genetic Interactions between an Essential 3′ cis-Acting RNA Pseudoknot, Replicase Gene Products, and the Extreme 3′ End of the Mouse Coronavirus Genome

Roland Züst; Timothy B. Miller; Scott J. Goebel; Volker Thiel; Paul S. Masters

ABSTRACT The upstream end of the 3′ untranslated region (UTR) of the mouse hepatitis virus genome contains two essential and overlapping RNA secondary structures, a bulged stem-loop and a pseudoknot, which have been proposed to be elements of a molecular switch that is critical for viral RNA synthesis. It has previously been shown that a particular six-base insertion in loop 1 of the pseudoknot is extremely deleterious to the virus. We have now isolated multiple independent second-site revertants of the loop 1 insertion mutant, and we used reverse-genetics methods to confirm the identities of suppressor mutations that could compensate for the original insertion. The suppressors were localized to two separate regions of the genome. Members of one class of suppressor were mapped to the portions of gene 1 that encode nsp8 and nsp9, thereby providing the first evidence for specific interactions between coronavirus replicase gene products and a cis-acting genomic RNA element. The second class of suppressor was mapped to the extreme 3′ end of the genome, a result which pointed to the existence of a direct base-pairing interaction between loop 1 of the pseudoknot and the genomic terminus. The latter finding was strongly supported by phylogenetic evidence and by the construction of a deletion mutant that reduced the 3′ UTR to its minimal essential elements. Taken together, the interactions revealed by the two classes of suppressors suggest a model for the initiation of coronavirus negative-strand RNA synthesis.


Journal of Virology | 2014

Type I Interferon Signals in Macrophages and Dendritic Cells Control Dengue Virus Infection: Implications for a New Mouse Model To Test Dengue Vaccines

Roland Züst; Ying Xiu Toh; Iris Valdés; Daniela Cerny; Julia Heinrich; Lisset Hermida; Ernesto Marcos; Gerardo Guillén; Ulrich Kalinke; Pei Yong Shi; Katja Fink

ABSTRACT Dengue virus (DENV) infects an estimated 400 million people every year, causing prolonged morbidity and sometimes mortality. Development of an effective vaccine has been hampered by the lack of appropriate small animal models; mice are naturally not susceptible to DENV and only become infected if highly immunocompromised. Mouse models lacking both type I and type II interferon (IFN) receptors (AG129 mice) or the type I IFN receptor (IFNAR−/− mice) are susceptible to infection with mouse-adapted DENV strains but are severely impaired in mounting functional immune responses to the virus and thus are of limited use for study. Here we used conditional deletion of the type I IFN receptor (IFNAR) on individual immune cell subtypes to generate a minimally manipulated mouse model that is susceptible to DENV while retaining global immune competence. Mice lacking IFNAR expression on CD11c+ dendritic cells and LysM+ macrophages succumbed completely to DENV infection, while mice deficient in the receptor on either CD11c+ or LysM+ cells were susceptible to infection but often resolved viremia and recovered fully from infection. Conditional IFNAR mice responded with a swift and strong CD8+ T-cell response to viral infection, compared to a weak response in IFNAR−/− mice. Furthermore, mice lacking IFNAR on either CD11c+ or LysM+ cells were also sufficiently immunocompetent to raise a protective immune response to a candidate subunit vaccine against DENV-2. These data demonstrate that mice with conditional deficiencies in expression of the IFNAR represent improved models for the study of DENV immunology and screening of vaccine candidates. IMPORTANCE Dengue virus infects 400 million people every year worldwide, causing 100 million clinically apparent infections, which can be fatal if untreated. Despite many years of research, there are no effective vaccine and no antiviral treatment available for dengue. Development of vaccines has been hampered in particular by the lack of a suitable small animal model. Mouse models used to test dengue vaccine are deficient in interferon (IFN) type I signaling and severely immunocompromised and therefore likely not ideal for the testing of vaccines. In this study, we explored alternative models lacking the IFN receptor only on certain cell types. We show that mice lacking the IFN receptor on either CD11c- or LysM-expressing cells (conditional IFNAR mice) are susceptible to dengue virus infection. Importantly, we demonstrate that conditional IFN receptor knockout mice generate a better immune response to live virus and a candidate dengue vaccine compared to IFNAR mice and are resistant to subsequent challenge.


Journal of General Virology | 2011

The ADP-ribose-1 -monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses

Thomas Kuri; Klara K. Eriksson; Ákos Putics; Roland Züst; Eric J. Snijder; Andrew D. Davidson; Stuart G. Siddell; Volker Thiel; John Ziebuhr; Friedemann Weber

Several plus-strand RNA viruses encode proteins containing macrodomains. These domains possess ADP-ribose-1″-phosphatase (ADRP) activity and/or bind poly(ADP-ribose), poly(A) or poly(G). The relevance of these activities in the viral life cycle has not yet been resolved. Here, we report that genetically engineered mutants of severe acute respiratory syndrome coronavirus (SARS-CoV) and human coronavirus 229E (HCoV-229E) expressing ADRP-deficient macrodomains displayed an increased sensitivity to the antiviral effect of alpha interferon compared with their wild-type counterparts. The data suggest that macrodomain-associated ADRP activities may have a role in viral escape from the innate immune responses of the host.


European Journal of Immunology | 2012

Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy

Veronika Nindl; Reinhard Maier; David Ratering; Rita de Giuli; Roland Züst; Volker Thiel; Elke Scandella; Franco Di Padova; Manfred Kopf; Markus Rudin; Thomas Rülicke; Burkhard Ludewig

Myocarditis is a potentially lethal inflammatory heart disease of children and young adults that frequently leads to dilated cardiomyopathy (DCM). Since diagnostic procedures and efficient therapies are lacking, it is important to characterize the critical immune effector pathways underlying the initial cardiac inflammation and the transition from myocarditis to DCM. We describe here a T‐cell receptor (TCR) transgenic mouse model with spontaneously developing autoimmune myocarditis that progresses to lethal DCM. Cardiac magnetic resonance imaging revealed early inflammation‐associated changes in the ventricle wall including transient thickening of the left ventricle wall. Furthermore, we found that IFN‐γ was a major effector cytokine driving the initial inflammatory process and that the cooperation of IFN‐γ and IL‐17A was essential for the development of the progressive disease. This novel TCR transgenic mouse model permits the identification of the central pathophysiological and immunological processes involved in the transition from autoimmune myocarditis to DCM.

Collaboration


Dive into the Roland Züst's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luisa Cervantes-Barragan

Mexican Social Security Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pei Yong Shi

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Kuri

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge