Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Reinhard Guthke is active.

Publication


Featured researches published by Reinhard Guthke.


BioSystems | 2009

Gene regulatory network inference : Data integration in dynamic models-A review

M. Hecker; Sandro Lambeck; Susanne Toepfer; Eugene P. van Someren; Reinhard Guthke

Systems biology aims to develop mathematical models of biological systems by integrating experimental and theoretical techniques. During the last decade, many systems biological approaches that base on genome-wide data have been developed to unravel the complexity of gene regulation. This review deals with the reconstruction of gene regulatory networks (GRNs) from experimental data through computational methods. Standard GRN inference methods primarily use gene expression data derived from microarrays. However, the incorporation of additional information from heterogeneous data sources, e.g. genome sequence and protein-DNA interaction data, clearly supports the network inference process. This review focuses on promising modelling approaches that use such diverse types of molecular biological information. In particular, approaches are discussed that enable the modelling of the dynamics of gene regulatory systems. The review provides an overview of common modelling schemes and learning algorithms and outlines current challenges in GRN modelling.


Bioinformatics | 2005

Dynamic network reconstruction from gene expression data applied to immune response during bacterial infection

Reinhard Guthke; Ulrich Möller; Martin Hoffmann; Frank Thies; Susanne Töpfer

MOTIVATION The immune response to bacterial infection represents a complex network of dynamic gene and protein interactions. We present an optimized reverse engineering strategy aimed at a reconstruction of this kind of interaction networks. The proposed approach is based on both microarray data and available biological knowledge. RESULTS The main kinetics of the immune response were identified by fuzzy clustering of gene expression profiles (time series). The number of clusters was optimized using various evaluation criteria. For each cluster a representative gene with a high fuzzy-membership was chosen in accordance with available physiological knowledge. Then hypothetical network structures were identified by seeking systems of ordinary differential equations, whose simulated kinetics could fit the gene expression profiles of the cluster-representative genes. For the construction of hypothetical network structures singular value decomposition (SVD) based methods and a newly introduced heuristic Network Generation Method here were compared. It turned out that the proposed novel method could find sparser networks and gave better fits to the experimental data. CONTACT [email protected].


Genome Biology | 2011

Comparative and functional genomics provide insights into the pathogenicity of dermatophytic fungi.

Anke Burmester; Ekaterina Shelest; Gernot Glöckner; Christoph Heddergott; Susann Schindler; Peter Staib; Andrew J. Heidel; Marius Felder; Andreas Petzold; Karol Szafranski; Marc Feuermann; Ivo Pedruzzi; Steffen Priebe; Marco Groth; Robert Winkler; Wenjun Li; Olaf Kniemeyer; Volker Schroeckh; Christian Hertweck; Bernhard Hube; Theodore C. White; Matthias Platzer; Reinhard Guthke; Joseph Heitman; Johannes Wöstemeyer; Peter F. Zipfel; Michel Monod; Axel A. Brakhage

BackgroundMillions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans.Results97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species.ConclusionsOur results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens.


Arthritis Research & Therapy | 2008

Molecular discrimination of responders and nonresponders to anti-TNFalpha therapy in rheumatoid arthritis by etanercept

Dirk Koczan; Susanne Drynda; M. Hecker; Andreas Drynda; Reinhard Guthke; Joern Kekow; Hans-Juergen Thiesen

IntroductionAbout 30% of rheumatoid arthritis patients fail to respond adequately to TNFα-blocking therapy. There is a medical and socioeconomic need to identify molecular markers for an early prediction of responders and nonresponders.MethodsRNA was extracted from peripheral blood mononuclear cells of 19 rheumatoid arthritis patients before the first application of the TNFα blocker etanercept as well as after 72 hours. Clinical response was assessed over 3 months using the 28-joint-count Disease Activity Score and X-ray scans. Supervised learning methods were applied to Affymetrix Human Genome U133 microarray data analysis to determine highly selective discriminatory gene pairs or triplets with prognostic relevance for the clinical outcome evinced by a decline of the 28-joint-count Disease Activity Score by 1.2.ResultsEarly downregulation of expression levels secondary to TNFα neutralization was associated with good clinical responses, as shown by a decline in overall disease activity 3 months after the start of treatment. Informative gene sets include genes (for example, NFKBIA, CCL4, IL8, IL1B, TNFAIP3, PDE4B, PPP1R15A and ADM) involved in different pathways and cellular processes such as TNFα signalling via NFκB, NFκB-independent signalling via cAMP, and the regulation of cellular and oxidative stress response. Pairs and triplets within these genes were found to have a high prognostic value, reflected by prediction accuracies of over 89% for seven selected gene pairs and of 95% for 10 specific gene triplets.ConclusionOur data underline that early gene expression profiling is instrumental in identifying candidate biomarkers to predict therapeutic outcomes of anti-TNFα treatment regimes.


Nature Chemical Biology | 2013

Role of Sirtuins in Lifespan Regulation is Linked to Methylation of Nicotinamide

Kathrin Schmeisser; Johannes Mansfeld; Doreen Kuhlow; Sandra Weimer; Steffen Priebe; Ines Heiland; Marc Birringer; Marco Groth; Alexandra Segref; Yariv Kanfi; Nathan L. Price; Sebastian Schmeisser; Stefan Schuster; Andreas F.H. Pfeiffer; Reinhard Guthke; Matthias Platzer; Thorsten Hoppe; Haim Y. Cohen; Kim Zarse; David A. Sinclair; Michael Ristow

Sirtuins, a family of histone deacetylases, have a fiercely debated role in regulating lifespan. In contrast with recent observations, here we find that overexpression of sir-2.1, the ortholog of mammalian SirT1, does extend Caenorhabditis elegans lifespan. Sirtuins mandatorily convert NAD(+) into nicotinamide (NAM). We here find that NAM and its metabolite, 1-methylnicotinamide (MNA), extend C. elegans lifespan, even in the absence of sir-2.1. We identify a previously unknown C. elegans nicotinamide-N-methyltransferase, encoded by a gene now named anmt-1, to generate MNA from NAM. Disruption and overexpression of anmt-1 have opposing effects on lifespan independent of sirtuins, with loss of anmt-1 fully inhibiting sir-2.1-mediated lifespan extension. MNA serves as a substrate for a newly identified aldehyde oxidase, GAD-3, to generate hydrogen peroxide, which acts as a mitohormetic reactive oxygen species signal to promote C. elegans longevity. Taken together, sirtuin-mediated lifespan extension depends on methylation of NAM, providing an unexpected mechanistic role for sirtuins beyond histone deacetylation.


Frontiers in Microbiology | 2012

An Interspecies Regulatory Network Inferred from Simultaneous RNA-seq of Candida albicans Invading Innate Immune Cells

Lanay Tierney; Jörg Linde; Sebastian Müller; Sascha Brunke; Juan Camilo Molina; Bernhard Hube; Ulrike Schöck; Reinhard Guthke; Karl Kuchler

The ability to adapt to diverse micro-environmental challenges encountered within a host is of pivotal importance to the opportunistic fungal pathogen Candida albicans. We have quantified C. albicans and M. musculus gene expression dynamics during phagocytosis by dendritic cells in a genome-wide, time-resolved analysis using simultaneous RNA-seq. A robust network inference map was generated from this dataset using NetGenerator, predicting novel interactions between the host and the pathogen. We experimentally verified predicted interdependent sub-networks comprising Hap3 in C. albicans, and Ptx3 and Mta2 in M. musculus. Remarkably, binding of recombinant Ptx3 to the C. albicans cell wall was found to regulate the expression of fungal Hap3 target genes as predicted by the network inference model. Pre-incubation of C. albicans with recombinant Ptx3 significantly altered the expression of Mta2 target cytokines such as IL-2 and IL-4 in a Hap3-dependent manner, further suggesting a role for Mta2 in host–pathogen interplay as predicted in the network inference model. We propose an integrated model for the functionality of these sub-networks during fungal invasion of immune cells, according to which binding of Ptx3 to the C. albicans cell wall induces remodeling via fungal Hap3 target genes, thereby altering the immune response to the pathogen. We show the applicability of network inference to predict interactions between host–pathogen pairs, demonstrating the usefulness of this systems biology approach to decipher mechanisms of microbial pathogenesis.


Molecular Systems Biology | 2014

Optimal regulatory strategies for metabolic pathways in Escherichia coli depending on protein costs.

Frank Wessely; Martin Bartl; Reinhard Guthke; Pu Li; Stefan Schuster; Christoph Kaleta

While previous studies have shed light on the link between the structure of metabolism and its transcriptional regulation, the extent to which transcriptional regulation controls metabolism has not yet been fully explored. In this work, we address this problem by integrating a large number of experimental data sets with a model of the metabolism of Escherichia coli. Using a combination of computational tools including the concept of elementary flux patterns, methods from network inference and dynamic optimization, we find that transcriptional regulation of pathways reflects the protein investment into these pathways. While pathways that are associated to a high protein cost are controlled by fine‐tuned transcriptional programs, pathways that only require a small protein cost are transcriptionally controlled in a few key reactions. As a reason for the occurrence of these different regulatory strategies, we identify an evolutionary trade‐off between the conflicting requirements to reduce protein investment and the requirement to be able to respond rapidly to changes in environmental conditions.


Molecular metabolism | 2013

Neuronal ROS signaling rather than AMPK/sirtuin-mediated energy sensing links dietary restriction to lifespan extension

Sebastian Schmeisser; Steffen Priebe; Marco Groth; Shamci Monajembashi; Peter Hemmerich; Reinhard Guthke; Matthias Platzer; Michael Ristow

Dietary restriction (DR) extends lifespan and promotes metabolic health in evolutionary distinct species. DR is widely believed to promote longevity by causing an energy deficit leading to increased mitochondrial respiration. We here show that inhibitors of mitochondrial complex I promote physical activity, stress resistance as well as lifespan of Caenorhabditis elegans despite normal food uptake, i.e. in the absence of DR. However, complex I inhibition does not further extend lifespan in dietarily restricted nematodes, indicating that impaired complex I activity mimics DR. Promotion of longevity due to complex I inhibition occurs independently of known energy sensors, including DAF-16/FoxO, as well as AAK-2/AMPK and SIR-2.1/sirtuins, or both. Consistent with the concept of mitohormesis, complex I inhibition transiently increases mitochondrial formation of reactive oxygen species (ROS) that activate PMK-1/p38 MAP kinase and SKN-1/NRF-2. Interference with this retrograde redox signal as well as ablation of two redox-sensitive neurons in the head of the worm similarly prevents extension of lifespan. These findings unexpectedly indicate that DR extends organismal lifespan through transient neuronal ROS signaling rather than sensing of energy depletion, providing unexpected pharmacological options to promote exercise capacity and healthspan despite unaltered eating habits.


Aging Cell | 2013

Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension.

Sebastian Schmeisser; Kathrin Schmeisser; Sandra Weimer; Marco Groth; Steffen Priebe; Eugen Fazius; Doreen Kuhlow; Denis Pick; Jürgen W. Einax; Reinhard Guthke; Matthias Platzer; Kim Zarse; Michael Ristow

Arsenite is one of the most toxic chemical substances known and is assumed to exert detrimental effects on viability even at lowest concentrations. By contrast and unlike higher concentrations, we here find that exposure to low‐dose arsenite promotes growth of cultured mammalian cells. In the nematode C. elegans, low‐dose arsenite promotes resistance against thermal and chemical stressors and extends lifespan of this metazoan, whereas higher concentrations reduce longevity. While arsenite causes a transient increase in reactive oxygen species (ROS) levels in C. elegans, co‐exposure to ROS scavengers prevents the lifespan‐extending capabilities of arsenite, indicating that transiently increased ROS levels act as transducers of arsenite effects on lifespan, a process known as mitohormesis. This requires two transcription factors, namely DAF‐16 and SKN‐1, which employ the metallothionein MTL‐2 as well as the mitochondrial transporter TIN‐9.1 to extend lifespan. Taken together, low‐dose arsenite extends lifespan, providing evidence for nonlinear dose‐response characteristics of toxin‐mediated stress resistance and longevity in a multicellular organism.


BMC Genomics | 2010

Integrative analysis of the heat shock response in Aspergillus fumigatus

Daniela Albrecht; Reinhard Guthke; Axel A. Brakhage; Olaf Kniemeyer

BackgroundAspergillus fumigatus is a thermotolerant human-pathogenic mold and the most common cause of invasive aspergillosis (IA) in immunocompromised patients. Its predominance is based on several factors most of which are still unknown. The thermotolerance of A. fumigatus is one of the traits which have been assigned to pathogenicity. It allows the fungus to grow at temperatures up to and above that of a fevered human host. To elucidate the mechanisms of heat resistance, we analyzed the change of the A. fumigatus proteome during a temperature shift from 30°C to 48°C by 2D-fluorescence difference gel electrophoresis (DIGE). To improve 2D gel image analysis results, protein spot quantitation was optimized by missing value imputation and normalization. Differentially regulated proteins were compared to previously published transcriptome data of A. fumigatus. The study was augmented by bioinformatical analysis of transcription factor binding sites (TFBSs) in the promoter region of genes whose corresponding proteins were differentially regulated upon heat shock.Results91 differentially regulated protein spots, representing 64 different proteins, were identified by mass spectrometry (MS). They showed a continuous up-, down- or an oscillating regulation. Many of the identified proteins were involved in protein folding (chaperones), oxidative stress response, signal transduction, transcription, translation, carbohydrate and nitrogen metabolism. A correlation between alteration of transcript levels and corresponding proteins was detected for half of the differentially regulated proteins. Interestingly, some previously undescribed putative targets for the heat shock regulator Hsf1 were identified. This provides evidence for Hsf1-dependent regulation of mannitol biosynthesis, translation, cytoskeletal dynamics and cell division in A. fumigatus. Furthermore, computational analysis of promoters revealed putative binding sites for an AP-2alpha-like transcription factor upstream of some heat shock induced genes. Until now, this factor has only been found in vertebrates.ConclusionsOur newly established DIGE data analysis workflow yields improved data quality and is widely applicable for other DIGE datasets. Our findings suggest that the heat shock response in A. fumigatus differs from already well-studied yeasts and other filamentous fungi.

Collaboration


Dive into the Reinhard Guthke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Groth

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge