Romain Boman
University of Liège
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Romain Boman.
International Journal for Numerical Methods in Biomedical Engineering | 2012
Vinciane D'Otreppe; Romain Boman; Jean-Philippe Ponthot
Thanks to advances in medical imaging technologies and numerical methods, patient-specific modelling is more and more used to improve diagnosis and to estimate the outcome of surgical interventions. It requires the extraction of the domain of interest from the medical scans of the patient, as well as the discretisation of this geometry. However, extracting smooth multi-material meshes that conform to the tissue boundaries described in the segmented image is still an active field of research. We propose to solve this issue by combining an implicit surface reconstruction method with a multi-region mesh extraction scheme. The surface reconstruction algorithm is based on multi-level partition of unity implicit surfaces, which we extended to the multi-material case. The mesh generation algorithm consists in a novel multi-domain version of the marching tetrahedra. It generates multi-region meshes as a set of triangular surface patches consistently joining each other at material junctions. This paper presents this original meshing strategy, starting from boundary points extraction from the segmented data to heterogeneous implicit surface definition, multi-region surface triangulation and mesh adaptation. Results indicate that the proposed approach produces smooth and high-quality triangular meshes with a reasonable geometric accuracy. Hence, the proposed method is well suited for subsequent volume mesh generation and finite element simulations.
Journal of Computational and Applied Mathematics | 2010
Lara M. Vigneron; Romain Boman; Jean-Philippe Ponthot; Pierre Robe; Simon K. Warfield; Jacques Verly
We consider the problem of improving outcomes for neurosurgery patients by enhancing intraoperative navigation and guidance. Current navigation systems do not accurately account for intraoperative brain deformation. We focus on the brain shift deformation that occurs just after the opening of the skull and dura. The heart of our system is a nonrigid registration technique using a biomechanical model. We specifically work on two axes: the representation of the structures in the biomechanical model and the evaluation of the surface landmark displacement fields between intraoperative MR images. Using the modified Hausdorff distance as an image similarity measure, we demonstrate that our approach significantly improves the alignment of the intraoperative images.
Journal of Materials Processing Technology | 2002
Romain Boman; Jean-Philippe Ponthot
Abstract In this paper, the lubrication problem in numerical simulation of rolling process is presented. In this case, the recent and complex model of Marsault for the solution of the mixed lubrication regime has been implemented and tested. This model requires the use of the finite difference method to work properly. We will discuss the advantages and the difficulties encountered when trying to solve the same problem with the finite element method in a general frame. Finally, a finite element formulation for the solution of the time-dependent Reynolds’ equation coupled with the deformation of the workpiece is proposed.
Applied Mechanics and Materials | 2014
Robert S. Pierce; Brian Falzon; Mark C. Thompson; Romain Boman
In the pursuit of producing high quality, low-cost composite aircraft structures, out-of-autoclave manufacturing processes for textile reinforcements are being simulated with increasing accuracy. This paper focuses on the continuum-based, finite element modelling of textile composites as they deform during the draping process. A non-orthogonal constitutive model tracks yarn orientations within a material subroutine developed for Abaqus/Explicit, resulting in the realistic determination of fabric shearing and material draw-in. Supplementary material characterisation was experimentally performed in order to define the tensile and non-linear shear behaviour accurately. The validity of the finite element model has been studied through comparison with similar research in the field and the experimental lay-up of carbon fibre textile reinforcement over a tool with double curvature geometry, showing good agreement.
Key Engineering Materials | 2011
Romain Boman; Jean-Philippe Ponthot
Due to the length of the mill, accurate modelling of stationary solution of continuous cold roll forming by the finite element method using the classical Lagrangian formulation usually requires a very large mesh leading to huge CPU times. In order to model industrial forming lines including many tools in a reasonable time, the sheet has to be shortened or the element size has to be increased leading to inaccurate results. On top of this, applying loads and boundary conditions on this smaller sheet is usually more difficult than in the continuous case. Moreover, transient dynamic vibrations, which are unnecessarily computed, may appear when the sheet hits each tool, decreasing the convergence rate of the numerical simulation. Beside this classical Lagrangian approach, an alternative method is given by the Arbitrary Lagrangian Eulerian (ALE) formalism which consists in decoupling the motion of the material and the mesh. Starting from an initial guess of the sheet geometry between the rolls, the numerical simulation is performed until the stationary state is reached with a mesh, the nodes of which are fixed in the rolling direction but are free to move on perpendicular plane, following the geometrical boundary of the sheet. The whole forming line can then be modelled using a limited number of brick and contact elements because the mesh is only refined near the tools where bending and contact occur. In this paper, ALE results are compared to previous Lagrangian simulations and experimental measurement on a U-channel, including springback. Advantages of the ALE method are finally demonstrated by the simulation of a tubular rocker panel on a 16-stands forming mill.
Advanced Modeling and Simulation in Engineering Sciences | 2015
Philippe Bussetta; N. Dialami; M. Chiumenti; Carlos Agelet de Saracibar; Miguel Cervera; Romain Boman; Jean-Philippe Ponthot
Friction stir welding process is a relatively recent welding process (patented in 1991). FSW is a solid-state joining process during which materials to be joined are not melted. During the FSW process, the behaviour of the material is at the interface between solid mechanics and fluid mechanics. In this paper, a 3D numerical model of the FSW process with a non-cylindrical tool based on a solid formulation is compared to another one based on a fluid formulation. Both models use advanced numerical techniques such as the Arbitrary Lagrangian Eulerian formulation, remeshing or the Orthogonal Sub-Grid Scale method. It is shown that these two formulations essentially deliver the same results.
Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology | 2011
Yves Carretta; Romain Boman; Antoine Stephany; Nicolas Legrand; Maxime Laugier; Jean-Philippe Ponthot
A cold-rolling model taking into account mixed lubrication regime has been developed and included into a simulation software named MetaLub. The main objective is to enhance the performances of rolling mills from a lubrication point of view. It means that lubricant rheology but also roll diameters and roughness, etc. can be optimized to improve stability and efficiency of the rolling tool. The main features of MetaLub are briefly presented in this article. Then, two studies of the influence of rolling speed and negative forward slip are discussed. The obtained numerical results are presented and compared to some experimental data from literature and from ArcelorMittal facilities in order to validate the model and to show its capacity to understand and help to improve industrial rolling conditions.
Journal of Computational Physics | 2017
Maarten Arnst; B. Abello Álvarez; Jean-Philippe Ponthot; Romain Boman
Abstract This paper is concerned with the characterization and the propagation of errors associated with data limitations in polynomial-chaos-based stochastic methods for uncertainty quantification. Such an issue can arise in uncertainty quantification when only a limited amount of data is available. When the available information does not suffice to accurately determine the probability distributions that must be assigned to the uncertain variables, the Bayesian method for assigning these probability distributions becomes attractive because it allows the stochastic model to account explicitly for insufficiency of the available information. In previous work, such applications of the Bayesian method had already been implemented by using the Metropolis–Hastings and Gibbs Markov Chain Monte Carlo (MCMC) methods. In this paper, we present an alternative implementation, which uses an alternative MCMC method built around an Ito stochastic differential equation (SDE) that is ergodic for the Bayesian posterior. We draw together from the mathematics literature a number of formal properties of this Ito SDE that lend support to its use in the implementation of the Bayesian method, and we describe its discretization, including the choice of the free parameters, by using the implicit Euler method. We demonstrate the proposed methodology on a problem of uncertainty quantification in a complex nonlinear engineering application relevant to metal forming.
Medical Engineering & Physics | 2016
Marlène Mengoni; Jean-Philippe Ponthot; Romain Boman
In finite element simulations of orthodontic tooth movement, one of the challenges is to represent long term tooth movement. Large deformation of the periodontal ligament and large tooth displacement due to bone remodelling lead to large distortions of the finite element mesh when a Lagrangian formalism is used. We propose in this work to use an Arbitrary Lagrangian Eulerian (ALE) formalism to delay remeshing operations. A large tooth displacement is obtained including effect of remodelling without the need of remeshing steps but keeping a good-quality mesh. Very large deformations in soft tissues such as the periodontal ligament is obtained using a combination of the ALE formalism used continuously and a remeshing algorithm used when needed. This work demonstrates that the ALE formalism is a very efficient way to delay remeshing operations.
Numerical Heat Transfer Part A-applications | 2016
Philippe Bussetta; Eric Feulvarch; Amèvi Tongne; Romain Boman; Jean-Michel Bergheau; Jean-Philippe Ponthot
ABSTRACT During the friction stir welding (FSW) process, the behavior of the material is at the interface between solid mechanics and fluid mechanics. This article deals with a comparison of two 3D numerical models of FSW processes with a trigonal pin. The first model is based on a solid formulation and the second one is based on a fluid formulation. Both models use a Norton–Hoff constitutive model with the high temperature sensitivity of the parameters’ value and advanced numerical techniques such as the Arbitrary Lagrangian Eulerian (ALE) formalism. It can be concluded that, basically, these two formulations lead to the same results.