Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romain Hamelin is active.

Publication


Featured researches published by Romain Hamelin.


Nature Communications | 2013

A quantitative telomeric chromatin isolation protocol identifies different telomeric states

Larissa Grolimund; Eric Aeby; Romain Hamelin; Florence Armand; Diego Chiappe; Marc Moniatte; Joachim Lingner

Telomere composition changes during tumourigenesis, aging and in telomere syndromes in a poorly defined manner. Here we develop a quantitative telomeric chromatin isolation protocol (QTIP) for human cells, in which chromatin is cross-linked, immunopurified and analysed by mass spectrometry. QTIP involves stable isotope labelling by amino acids in cell culture (SILAC) to compare and identify quantitative differences in telomere protein composition of cells from various states. With QTIP, we specifically enrich telomeric DNA and all shelterin components. We validate the method characterizing changes at dysfunctional telomeres, and identify and validate known, as well as novel telomere-associated polypeptides including all THO subunits, SMCHD1 and LRIF1. We apply QTIP to long and short telomeres and detect increased density of SMCHD1 and LRIF1 and increased association of the shelterins TRF1, TIN2, TPP1 and POT1 with long telomeres. Our results validate QTIP to study telomeric states during normal development and in disease.


Cellular Microbiology | 2011

Activation of a PAK-MEK signalling pathway in malaria parasite-infected erythrocytes.

Audrey Sicard; Jean-Phillipe Semblat; Caroline Doerig; Romain Hamelin; Marc Moniatte; Dominique Dorin-Semblat; Julie A. Spicer; Anubhav Srivastava; Silke Retzlaff; Volker Heussler; Andrew P. Waters; Christian Doerig

Merozoites of malaria parasites invade red blood cells (RBCs), where they multiply by schizogony, undergoing development through ring, trophozoite and schizont stages that are responsible for malaria pathogenesis. Here, we report that a protein kinase‐mediated signalling pathway involving host RBC PAK1 and MEK1, which do not have orthologues in the Plasmodium kinome, is selectively stimulated in Plasmodium falciparum‐infected (versus uninfected) RBCs, as determined by the use of phospho‐specific antibodies directed against the activated forms of these enzymes. Pharmacological interference with host MEK and PAK function using highly specific allosteric inhibitors in their known cellular IC50 ranges results in parasite death. Furthermore, MEK inhibitors have parasiticidal effects in vitro on hepatocyte and erythrocyte stages of the rodent malaria parasite Plasmodium berghei, indicating conservation of this subversive strategy in malaria parasites. These findings have profound implications for the development of novel strategies for antimalarial chemotherapy.


Applied and Environmental Microbiology | 2013

Mechanisms of Human Adenovirus Inactivation by Sunlight and UVC Light as Examined by Quantitative PCR and Quantitative Proteomics

Franziska Sara Bosshard; Florence Armand; Romain Hamelin; Tamar Kohn

ABSTRACT Human adenoviruses (HAdV) are important pathogens in both industrialized and developing nations. HAdV has been shown to be relatively resistant to monochromatic UVC light. Polychromatic UVC light, in contrast, is a more effective means of disinfection, presumably due to the involvement of viral proteins in the inactivation mechanism. Solar disinfection of HAdV, finally, is only poorly understood. In this paper, the kinetics and mechanism of HAdV inactivation by UVC light and direct and indirect solar disinfection are elucidated. PCR and mass spectrometry were employed to quantify the extent of genome and protein degradation and to localize the affected regions in the HAdV proteins. For this purpose, we used for the first time an approach involving stable isotope labeling by amino acids in cell culture (SILAC) of a human virus. Inactivation by UVC light and the full sunlight spectrum were found to efficiently inactivate HAdV, whereas UVA-visible light only caused inactivation in the presence of external sensitizers (indirect solar disinfection). Genome damage was significant for UVC but was less important for solar disinfection. In contrast, indirect solar disinfection exhibited extensive protein degradation. In particular, the fiber protein and the amino acids responsible for host binding within the fiber protein were shown to degrade. In addition, the central domain of the penton protein was damaged, which may inhibit interactions with the fiber protein and lead to a disruption of the initial stages of infection. Damage to the hexon protein, however, appeared to affect only regions not directly involved in the infectious cycle.


BMC Biology | 2012

Involvement of Plasmodium falciparum protein kinase CK2 in the chromatin assembly pathway

Eeshita G. Dastidar; Guillem Dayer; Zoe Holland; Dominique Dorin-Semblat; Aurélie Claes; Arnaud Chêne; Amit Sharma; Romain Hamelin; Marc Moniatte; Jose-Juan Lopez-Rubio; Artur Scherf; Christian Doerig

BackgroundProtein kinase CK2 is a pleiotropic serine/threonine protein kinase with hundreds of reported substrates, and plays an important role in a number of cellular processes. The cellular functions of Plasmodium falciparum CK2 (PfCK2) are unknown. The parasites genome encodes one catalytic subunit, PfCK2α, which we have previously shown to be essential for completion of the asexual erythrocytic cycle, and two putative regulatory subunits, PfCK2β1 and PfCK2β2.ResultsWe now show that the genes encoding both regulatory PfCK2 subunits (PfCK2β1 and PfCK2β2) cannot be disrupted. Using immunofluorescence and electron microscopy, we examined the intra-erythrocytic stages of transgenic parasite lines expressing hemagglutinin (HA)-tagged catalytic and regulatory subunits (HA-CK2α, HA-PfCK2β1 or HA-PfCK2β2), and localized all three subunits to both cytoplasmic and nuclear compartments of the parasite. The same transgenic parasite lines were used to purify PfCK2β1- and PfCK2β2-containing complexes, which were analyzed by mass spectrometry. The recovered proteins were unevenly distributed between various pathways, with a large proportion of components of the chromatin assembly pathway being present in both PfCK2β1 and PfCK2β2 precipitates, implicating PfCK2 in chromatin dynamics. We also found that chromatin-related substrates such as nucleosome assembly proteins (Naps), histones, and two members of the Alba family are phosphorylated by PfCK2α in vitro.ConclusionsOur reverse-genetics data show that each of the two regulatory PfCK2 subunits is required for completion of the asexual erythrocytic cycle. Our interactome study points to an implication of PfCK2 in many cellular pathways, with chromatin dynamics being identified as a major process regulated by PfCK2. This study paves the way for a kinome-wide interactomics-based approach to elucidate protein kinase function in malaria parasites.


Molecular & Cellular Proteomics | 2014

Quantitative Mass Spectrometry Reveals Plasticity of Metabolic Networks in Mycobacterium smegmatis

Tarun Chopra; Romain Hamelin; Florence Armand; Diego Chiappe; Marc Moniatte; John D. McKinney

Mycobacterium tuberculosis has a remarkable ability to persist within the human host as a clinically inapparent or chronically active infection. Fatty acids are thought to be an important carbon source used by the bacteria during long term infection. Catabolism of fatty acids requires reprogramming of metabolic networks, and enzymes central to this reprogramming have been targeted for drug discovery. Mycobacterium smegmatis, a nonpathogenic relative of M. tuberculosis, is often used as a model system because of the similarity of basic cellular processes in these two species. Here, we take a quantitative proteomics-based approach to achieve a global view of how the M. smegmatis metabolic network adjusts to utilization of fatty acids as a carbon source. Two-dimensional liquid chromatography and mass spectrometry of isotopically labeled proteins identified a total of 3,067 proteins with high confidence. This number corresponds to 44% of the predicted M. smegmatis proteome and includes most of the predicted metabolic enzymes. Compared with glucose-grown cells, 162 proteins showed differential abundance in acetate- or propionate-grown cells. Among these, acetate-grown cells showed a higher abundance of proteins that could constitute a functional glycerate pathway. Gene inactivation experiments confirmed that both the glyoxylate shunt and the glycerate pathway are operational in M. smegmatis. In addition to proteins with annotated functions, we demonstrate carbon source-dependent differential abundance of proteins that have not been functionally characterized. These proteins might play as-yet-unidentified roles in mycobacterial carbon metabolism. This study reveals several novel features of carbon assimilation in M. smegmatis, which suggests significant functional plasticity of metabolic networks in this organism.


Leukemia | 2017

Differential signaling networks of Bcr-Abl p210 and p190 kinases in leukemia cells defined by functional proteomics

Sina Reckel; Romain Hamelin; Sandrine Georgeon; Florence Armand; Q Jolliet; Diego Chiappe; Marc Moniatte; Oliver Hantschel

The two major isoforms of the oncogenic Bcr–Abl tyrosine kinase, p210 and p190, are expressed upon the Philadelphia chromosome translocation. p210 is the hallmark of chronic myelogenous leukemia, whereas p190 occurs in the majority of B-cell acute lymphoblastic leukemia. Differences in protein interactions and activated signaling pathways that may be associated with the different diseases driven by p210 and p190 are unknown. We have performed a quantitative comparative proteomics study of p210 and p190. Strong differences in the interactome and tyrosine phosphoproteome were found and validated. Whereas the AP2 adaptor complex that regulates clathrin-mediated endocytosis interacts preferentially with p190, the phosphatase Sts1 is enriched with p210. Stronger activation of the Stat5 transcription factor and the Erk1/2 kinases is observed with p210, whereas Lyn kinase is activated by p190. Our findings provide a more coherent understanding of Bcr–Abl signaling, mechanisms of leukemic transformation, resulting disease pathobiology and responses to kinase inhibitors.


Frontiers in Microbiology | 2014

Characterization of the surfaceome of the metal-reducing bacterium Desulfotomaculum reducens

Elena Dalla Vecchia; Paul P. Shao; Elena I. Suvorova; Diego Chiappe; Romain Hamelin; Rizlan Bernier-Latmani

Desulfotomaculum reducens strain MI-1 is a Gram-positive, sulfate-reducing bacterium also capable of reducing Fe(III). Metal reduction in Gram-positive bacteria is poorly understood. Here, we investigated Fe(III) reduction with lactate, a non-fermentable substrate, as the electron donor. Lactate consumption is concomitant to Fe(III) reduction, but does not support significant growth, suggesting that little energy can be conserved from this process and that it may occur fortuitously. D. reducens can reduce both soluble [Fe(III)-citrate] and insoluble (hydrous ferric oxide, HFO) Fe(III). Because physically inaccessible HFO was not reduced, we concluded that reduction requires direct contact under these experimental conditions. This implies the presence of a surface exposed reductase capable of transferring electrons from the cell to the extracellular electron acceptor. With the goal of characterizing the role of surface proteins in D. reducens and of identifying candidate Fe(III) reductases, we carried out an investigation of the surface proteome (surfaceome) of D. reducens. Cell surface exposed proteins were extracted by trypsin cell shaving or by lysozyme treatment, and analyzed by liquid chromatography-tandem mass spectrometry. This investigation revealed that the surfaceome fulfills many functions, including solute transport, protein export, maturation and hydrolysis, peptidoglycan synthesis and modification, and chemotaxis. Furthermore, a few redox-active proteins were identified. Among these, three are putatively involved in Fe(III) reduction, i.e., a membrane-bound hydrogenase 4Fe-4S cluster subunit (Dred_0462), a heterodisulfide reductase subunit A (Dred_0143) and a protein annotated as alkyl hydroperoxide reductase but likely functioning as a thiol-disulfide oxidoreductase (Dred_1533).


Current Biology | 2017

Identification of Chlamydomonas Central Core Centriolar Proteins Reveals a Role for Human WDR90 in Ciliogenesis

Virginie Hamel; Emmanuelle Steib; Romain Hamelin; Florence Armand; Susanne Borgers; Isabelle Flückiger; Coralie Busso; Natacha Olieric; Carlos Oscar S. Sorzano; Michel O. Steinmetz; Paul Guichard; Pierre Gönczy

Summary Centrioles are evolutionarily conserved macromolecular structures that are fundamental to form cilia, flagella, and centrosomes. Centrioles are 9-fold symmetrical microtubule-based cylindrical barrels comprising three regions that can be clearly distinguished in the Chlamydomonas reinhardtii organelle: an ∼100-nm-long proximal region harboring a cartwheel; an ∼250-nm-long central core region containing a Y-shaped linker; and an ∼150-nm-long distal region ending at the transitional plate. Despite the discovery of many centriolar components, no protein has been localized specifically to the central core region in Chlamydomonas thus far. Here, combining relative quantitative mass spectrometry and super-resolution microscopy on purified Chlamydomonas centrioles, we identified POB15 and POC16 as two proteins of the central core region, the distribution of which correlates with that of tubulin glutamylation. We demonstrated that POB15 is an inner barrel protein within this region. Moreover, we developed an assay to uncover temporal relationships between centriolar proteins during organelle assembly and thus established that POB15 is recruited after the cartwheel protein CrSAS-6 and before tubulin glutamylation takes place. Furthermore, we discovered that two poc16 mutants exhibit flagellar defects, indicating that POC16 is important for flagellum biogenesis. In addition, we discovered that WDR90, the human homolog of POC16, localizes to a region of human centrioles that we propose is analogous to the central core of Chlamydomonas centrioles. Moreover, we demonstrate that WDR90 is required for ciliogenesis, echoing the findings in Chlamydomonas. Overall, our work provides novel insights into the identity and function of centriolar central core components.


Journal of Neurochemistry | 2015

Identification of new Presenilin‐1 phosphosites: implication for γ‐secretase activity and Aβ production

Alexandre Matz; Blanka Halamoda-Kenzaoui; Romain Hamelin; Sébastien Mosser; Jean-René Alattia; Mitko Dimitrov; Marc Moniatte; Patrick C. Fraering

An important pathological hallmark of Alzheimers disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimers Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.


Proteomics | 2015

A mammalian transcription factor-specific peptide repository for targeted proteomics

Jovan Simicevic; Marc Moniatte; Romain Hamelin; Erik Ahrné; Bart Deplancke

Site‐specific transcription factors (TFs) play an essential role in mammalian development and function as they are vital for the majority of cellular processes. Despite their biological importance, TF proteomic data is scarce in the literature, likely due to difficulties in detecting peptides as the abundance of TFs in cells tends to be low. In recent years, significant improvements in MS‐based technologies in terms of sensitivity and specificity have increased the interest in developing quantitative methodologies specifically targeting relatively lowly abundant proteins such as TFs in mammalian models. Such efforts would be greatly aided by the availability of TF peptide‐specific information as such data would not only enable improvements in speed and accuracy of protein identifications, but also ameliorate cross‐comparisons of quantitative proteomics data and allow for a more efficient development of targeted proteomics assays. However, to date, no comprehensive TF proteotypic peptide database has been developed. To address this evident lack of TF peptide data in public repositories, we are generating a comprehensive, experimentally derived TF proteotypic peptide spectral library dataset based on in vitro protein expression. Our library currently contains peptide information for 89 TFs and this number is set to increase in the near future. All MS data have been deposited in the ProteomeXchange with identifier PXD001212 (http://proteomecentral.proteomexchange.org/dataset/PXD001212).

Collaboration


Dive into the Romain Hamelin's collaboration.

Top Co-Authors

Avatar

Florence Armand

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Marc Moniatte

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Diego Chiappe

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Géraldine Florence Buttet

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Julien Maillard

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Tamar Kohn

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Franziska Sara Bosshard

École nationale de l'aviation civile

View shared research outputs
Top Co-Authors

Avatar

Aamani Rupakula

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Alexandre Matz

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge