Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Romain Jolivet is active.

Publication


Featured researches published by Romain Jolivet.


Journal of Geophysical Research | 2012

Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry

Romain Jolivet; Cecile Lasserre; Marie Pierre Doin; S. Guillaso; Gilles Peltzer; R. Dailu; J. F. Sun; Zheng-Kang Shen; Xiwei Xu

Interferometric synthetic aperture radar data are used to map the interseismic velocity field along the Haiyuan fault system (HFS), at the north‐eastern boundary of the Tibetan plateau. Two M ∼ 8 earthquakes ruptured the HFS in 1920 and 1927, but its 260 km‐long central section, known as the Tianzhu seismic gap, remains unbroken since ∼1000 years. The Envisat SAR data, spanning the 2003–2009 period, cover about 200 × 300 km2 along three descending and two ascending tracks. Interferograms are processed using an adapted version of ROI_PAC. The signal due to stratified atmospheric phase delay is empirically corrected together with orbital residuals. Mean line‐of‐sight velocity maps are computed using a constrained time series analysis after selection of interferograms with low atmospheric noise. These maps show a dominant left‐lateral motion across the HFS, and reveal a narrow, 35 km‐long zone of high velocity gradient across the fault in between the Tianzhu gap and the 1920 rupture. We model the observed velocity field using a discretized fault creeping at shallow depth and a least squares inversion. The inferred shallow slip rate distribution reveals aseismic slip in between two fully locked segments. The average creep rate is ∼5 mm yr−1, comparable in magnitude with the estimated loading rate at depth, suggesting no strain accumulation on this segment. The modeled creep rate locally exceeds the long term rate, reaching 8 mm yr−1, suggesting transient creep episodes. The present study emphasizes the need for continuous monitoring of the surface velocity in the vicinity of major seismic gaps in terms of seismic hazard assessment.


Journal of Geophysical Research | 2014

Improving InSAR geodesy using Global Atmospheric Models

Romain Jolivet; Piyush Agram; Nina Y. Lin; Mark Simons; Marie-Pierre Doin; Gilles Peltzer; Zhenghong Li

Spatial and temporal variations of pressure, temperature, and water vapor content in the atmosphere introduce significant confounding delays in interferometric synthetic aperture radar (InSAR) observations of ground deformation and bias estimates of regional strain rates. Producing robust estimates of tropospheric delays remains one of the key challenges in increasing the accuracy of ground deformation measurements using InSAR. Recent studies revealed the efficiency of global atmospheric reanalysis to mitigate the impact of tropospheric delays, motivating further exploration of their potential. Here we explore the effectiveness of these models in several geographic and tectonic settings on both single interferograms and time series analysis products. Both hydrostatic and wet contributions to the phase delay are important to account for. We validate these path delay corrections by comparing with estimates of vertically integrated atmospheric water vapor content derived from the passive multispectral imager Medium-Resolution Imaging Spectrometer, onboard the Envisat satellite. Generally, the performance of the prediction depends on the vigor of atmospheric turbulence. We discuss (1) how separating atmospheric and orbital contributions allows one to better measure long-wavelength deformation and (2) how atmospheric delays affect measurements of surface deformation following earthquakes, and (3) how such a method allows us to reduce biases in multiyear strain rate estimates by reducing the influence of unevenly sampled seasonal oscillations of the tropospheric delay.


Geology | 2012

Long-term growth of the Himalaya inferred from interseismic InSAR measurement

R. Grandin; Marie-Pierre Doin; Laurent Bollinger; Béatrice Pinel-Puysségur; Gabriel Ducret; Romain Jolivet; Soma Nath Sapkota

The rise and support of the ∼5000 m topographic scarp at the front of Indian-Eurasian collision in the Himalaya involves long-term uplift above a mid-crustal ramp within the Main Himalayan Thrust (MHT) system. Locking of the shallower portion of the flat-ramp-flat during the interseismic period also produces transient uplift above the transition zone. However, spatial and temporal relationships between permanent and transient vertical deformation in the Himalaya are poorly constrained, leading to an unresolved causal relationship between the two. Here, we use interferometric synthetic aperture radar (InSAR) to measure interseismic uplift on a transect crossing the whole Himalaya in central Nepal. The uplift velocity of 7 mm/yr at the front of the Annapurna mountain range is explained by an 18–21 mm/yr slip rate on the deep shallow-dipping portion of the MHT, with full locking of the mid-crustal ramp underlying the High Himalaya. The transient uplift peak observed by InSAR matches spatially with the long-term uplift peak deduced from the study of trans-Himalayan river incision, although models of the seismic cycle involving thrusting over a ramp of fixed geometry predict an ∼20 km separation between the two peaks. We argue that this coincidence indicates that today’s mid-crustal ramp in central Nepal is located southward with respect to its average long-term location, suggesting that mountain growth proceeds by frontward migration of the ramp driven by underplating of material from the Indian plate under the Himalaya.


Geophysical Research Letters | 2015

Aseismic slip and seismogenic coupling along the central San Andreas Fault

Romain Jolivet; Mark Simons; Piyush Agram; Zacharie Duputel; Zheng-Kang Shen

We use high-resolution Synthetic Aperture Radar- and GPS-derived observations of surface displacements to derive the first probabilistic estimates of fault coupling along the creeping section of the San Andreas Fault, in between the terminations of the 1857 and 1906 magnitude 7.9 earthquakes. Using a fully Bayesian approach enables unequaled resolution and allows us to infer a high probability of significant fault locking along the creeping section. The inferred discreet locked asperities are consistent with evidence for magnitude 6+ earthquakes over the past century in this area and may be associated with the initiation phase of the 1857 earthquake. As creeping segments may be related to the initiation and termination of seismic ruptures, such distribution of locked and creeping asperities highlights the central role of the creeping section on the occurrence of major earthquakes along the San Andreas Fault.


Bulletin of the Seismological Society of America | 2014

The 2013 Mw 7.7 Balochistan Earthquake: Seismic Potential of an Accretionary Wedge

Romain Jolivet; Zacharie Duputel; Bryan Riel; Mark Simons; Luis A. Rivera; Sarah E. Minson; H. Zhang; M. A. G. Aivazis; F. Ayoub; Sébastien Leprince; Sergey V. Samsonov; M. Motagh; Eric J. Fielding

Great earthquakes rarely occur within active accretionary prisms, despite the intense long‐term deformation associated with the formation of these geologic structures. This paucity of earthquakes is often attributed to partitioning of deformation across multiple structures as well as aseismic deformation within and at the base of the prism (Davis et al., 1983). We use teleseismic data and satellite optical and radar imaging of the 2013 M_w 7.7 earthquake that occurred on the southeastern edge of the Makran plate boundary zone to study this unexpected earthquake. We first compute a multiple point‐source solution from W‐phase waveforms to estimate fault geometry and rupture duration and timing. We then derive the distribution of subsurface fault slip from geodetic coseismic offsets. We sample for the slip posterior probability density function using a Bayesian approach, including a full description of the data covariance and accounting for errors in the elastic structure of the crust. The rupture nucleated on a subvertical segment, branching out of the Chaman fault system, and grew into a major earthquake along a 50° north‐dipping thrust fault with significant along‐strike curvature. Fault slip propagated at an average speed of 3.0  km/s for about 180 km and is concentrated in the top 10 km with no displacement on the underlying decollement. This earthquake does not exhibit significant slip deficit near the surface, nor is there significant segmentation of the rupture. We propose that complex interaction between the subduction accommodating the Arabia–Eurasia convergence to the south and the Ornach Nal fault plate boundary between India and Eurasia resulted in the significant strain gradient observed prior to this earthquake. Convergence in this region is accommodated both along the subduction megathrust and as internal deformation of the accretionary wedge.


Eos, Transactions American Geophysical Union | 2013

New Radar Interferometric Time Series Analysis Toolbox Released

Piyush Agram; Romain Jolivet; Bryan Riel; Y. N. Lin; Mark Simons; Eric Hetland; Marie-Pierre Doin; Cécile Lasserre

Interferometric synthetic aperture radar (InSAR) has become an important geodetic tool for measuring deformation of Earth’s surface due to various geophysical phenomena, including slip on earthquake faults, subsurface migration of magma, slow‐moving landslides, movement of shallow crustal fluids (e.g., water and oil), and glacier flow. Airborne and spaceborne synthetic aperture radar (SAR) instruments transmit microwaves toward Earth’s surface and detect the returning reflected waves. The phase of the returned wave depends on the distance between the satellite and the surface, but it is also altered by atmospheric and other effects. InSAR provides measurements of surface deformation by combining amplitude and phase information from two SAR images of the same location taken at different times to create an interferogram. Several existing open‐source analysis tools [Rosen et al., 2004; Rosen et al., 2011; Kampes et al., 2003 ; Sandwell et al., 2011] enable scientists to exploit observations from radar satellites acquired at two different epochs to produce a surface displacement map.


Geophysical Research Letters | 2015

The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

Zacharie Duputel; J. H. Jiang; Romain Jolivet; Mark Simons; Luis Rivera; Jean-Paul Ampuero; Bryan Riel; S. E. Owen; Angelyn W. Moore; Sergey V. Samsonov; F. Ortega Culaciati; Sarah E. Minson

The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Greens functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.


Geophysical Research Letters | 2016

An aseismic slip transient on the North Anatolian Fault

Baptiste Rousset; Romain Jolivet; Mark Simons; Cécile Lasserre; Bryan Riel; Pietro Milillo; Ziyadin Cakir; François Renard

Constellations of Synthetic Aperture Radar (SAR) satellites with short repeat time acquisitions allow exploration of active faults behavior with unprecedented temporal resolution. Along the North Anatolian Fault (NAF) in Turkey, an 80 km long section has been creeping at least since the 1944, M_w 7.3 earthquake near Ismetpasa, with a current Interferometric Synthetic Aperture Radar (InSAR)-derived average creep rate of 8 ± 3 mm/yr (i.e., a third of the NAF long-term slip rate). We use a dense set of SAR images acquired by the COSMO-SkyMed constellation to quantify the spatial distribution and temporal evolution of creep over 1 year. We identify a major burst of aseismic slip spanning 31 days with a maximum slip of 2 cm, between the surface and 4 km depth. This result shows that fault creep along this section of the NAF does not occur at a steady rate as previously thought, highlighting a need to revise our understanding of the underlying fault mechanics.


Bulletin of the Seismological Society of America | 2015

The Burst‐Like Behavior of Aseismic Slip on a Rough Fault: The Creeping Section of the Haiyuan Fault, China

Romain Jolivet; Thibault Candela; Cecile Lasserre; François Renard; Yann Klinger; Marie Pierre Doin

Recent observations suggesting the influence of creep on earthquakes nucleation and arrest are strong incentives to investigate the physical mechanisms controlling how active faults slip. We focus here on deriving generic characteristics of shallow creep along the Haiyuan fault, a major strike‐slip fault in China, by investigating the relationship between fault slip and geometry. We use optical images and time series of Synthetic Aperture Radar data to map the surface fault trace and the spatiotemporal distribution of surface slip along the creeping section of the Haiyuan fault. The fault trace roughness shows a power‐law behavior similar to that of the aseismic slip distribution, with a 0.8 roughness exponent, typical of a self‐affine regime. One possible interpretation is that fault geometry controls to some extent the distribution of aseismic slip, as it has been shown previously for coseismic slip along active faults. Creep is characterized by local fluctuations in rates that we define as creep bursts. The potency of creep bursts follows a power‐law behavior similar to the Gutenberg–Richter earthquake distribution, whereas the distribution of bursts velocity is non‐Gaussian, suggesting an avalanche‐like behavior of these slip events. Such similarities with earthquakes and lab experiments lead us to interpret the rich dynamics of creep bursts observed along the Haiyuan fault as resulting from long‐range elastic interactions within the heterogeneous Earth’s crust.


Geophysical Research Letters | 2016

Constraining the kinematics of metropolitan Los Angeles faults with a slip‐partitioning model

Simon Daout; Sylvain Barbot; Gilles Peltzer; Marie-Pierre Doin; Zhen Liu; Romain Jolivet

Abstract Due to the limited resolution at depth of geodetic and other geophysical data, the geometry and the loading rate of the ramp‐décollement faults below the metropolitan Los Angeles are poorly understood. Here we complement these data by assuming conservation of motion across the Big Bend of the San Andreas Fault. Using a Bayesian approach, we constrain the geometry of the ramp‐décollement system from the Mojave block to Los Angeles and propose a partitioning of the convergence with 25.5 ± 0.5 mm/yr and 3.1 ± 0.6 mm/yr of strike‐slip motion along the San Andreas Fault and the Whittier Fault, with 2.7 ± 0.9 mm/yr and 2.5 ± 1.0 mm/yr of updip movement along the Sierra Madre and the Puente Hills thrusts. Incorporating conservation of motion in geodetic models of strain accumulation reduces the number of free parameters and constitutes a useful methodology to estimate the tectonic loading and seismic potential of buried fault networks.

Collaboration


Dive into the Romain Jolivet's collaboration.

Top Co-Authors

Avatar

Mark Simons

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Gilles Peltzer

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cecile Lasserre

Joseph Fourier University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Lasserre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Bryan Riel

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Jean-Philippe Avouac

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Marie Pierre Doin

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

R. Grandin

Institut de Physique du Globe de Paris

View shared research outputs
Researchain Logo
Decentralizing Knowledge