Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Zacharie Duputel is active.

Publication


Featured researches published by Zacharie Duputel.


Nature Geoscience | 2008

Towards forecasting volcanic eruptions using seismic noise

Florent Brenguier; Nikolai M. Shapiro; Michel Campillo; Zacharie Duputel; Olivier Coutant; Alexandre Nercessian

Volcanic eruptions are preceded by increased magma pressures, leading to the inflation of volcanic edifices1. Ground deformation resulting from volcano inflation can be revealed by various techniques such as spaceborne radar interferometry2, or by strain- and tiltmeters3. Monitoring this process in real time can provide us with useful information to forecast volcanic eruptions. In some cases, however, volcano inflation can be localized at depth with no measurable effects at the surface, and despite considerable effort4, 5 monitoring changes in volcanic interiors has proven to be difficult. Here we use the properties of ambient seismic noise recorded over an 18-month interval to show that changes in the interior of the Piton de la Fournaise volcano can be monitored continuously by measuring very small relative seismic-velocity perturbations, of the order of 0.05%. Decreases in seismic velocity a few weeks before eruptions suggest pre-eruptive inflation of the volcanic edifice, probably due to increased magma pressure. The ability to record the inflation of volcanic edifices in this fashion should improve our ability to forecast eruptions and their intensity and potential environmental impact.


Science | 2012

Earthquake in a Maze: Compressional Rupture Branching During the 2012 Mw 8.6 Sumatra Earthquake

Lingsen Meng; Jean-Paul Ampuero; Joann M. Stock; Zacharie Duputel; Yingdi Luo; Victor C. Tsai

Earthquake in a Maze The 11 April 2012 magnitude 8.6 earthquake offshore of Sumatra was the largest measured earthquake along a strike-slip boundary that modern seismological instruments have ever recorded. Despite its size and proximity to a large population, there was no subsequent tsunami and there were no reported fatalities. Meng et al. (p. 724, published online 19 July) used teleseismic data from seismological networks in Japan and Europe to image the source of high-frequency radiation generated by the earthquake to understand the mechanics of this unique event. The resultant back projections showed that the earthquake slowly ruptured along a complex series of faults. The deeper-than-usual rupture path and large stress drop are both features that may not be unique to this earthquake, suggesting that regions in a similar tectonic environment may have the potential for more complex—or larger—intraplate earthquakes than might have been expected. The mechanics of the largest strike-slip earthquake ever recorded give clues about how intraplate earthquakes rupture. Seismological observations of the 2012 moment magnitude 8.6 Sumatra earthquake reveal unprecedented complexity of dynamic rupture. The surprisingly large magnitude results from the combination of deep extent, high stress drop, and rupture of multiple faults. Back-projection source imaging indicates that the rupture occurred on distinct planes in an orthogonal conjugate fault system, with relatively slow rupture speed. The east-southeast–west-northwest ruptures add a new dimension to the seismotectonics of the Wharton Basin, which was previously thought to be controlled by north-south strike-slip faulting. The rupture turned twice into the compressive quadrant, against the preferred branching direction predicted by dynamic Coulomb stress calculations. Orthogonal faulting and compressional branching indicate that rupture was controlled by a pressure-insensitive strength of the deep oceanic lithosphere.


Geophysical Research Letters | 2015

Aseismic slip and seismogenic coupling along the central San Andreas Fault

Romain Jolivet; Mark Simons; Piyush Agram; Zacharie Duputel; Zheng-Kang Shen

We use high-resolution Synthetic Aperture Radar- and GPS-derived observations of surface displacements to derive the first probabilistic estimates of fault coupling along the creeping section of the San Andreas Fault, in between the terminations of the 1857 and 1906 magnitude 7.9 earthquakes. Using a fully Bayesian approach enables unequaled resolution and allows us to infer a high probability of significant fault locking along the creeping section. The inferred discreet locked asperities are consistent with evidence for magnitude 6+ earthquakes over the past century in this area and may be associated with the initiation phase of the 1857 earthquake. As creeping segments may be related to the initiation and termination of seismic ruptures, such distribution of locked and creeping asperities highlights the central role of the creeping section on the occurrence of major earthquakes along the San Andreas Fault.


Bulletin of the Seismological Society of America | 2014

The 2013 Mw 7.7 Balochistan Earthquake: Seismic Potential of an Accretionary Wedge

Romain Jolivet; Zacharie Duputel; Bryan Riel; Mark Simons; Luis A. Rivera; Sarah E. Minson; H. Zhang; M. A. G. Aivazis; F. Ayoub; Sébastien Leprince; Sergey V. Samsonov; M. Motagh; Eric J. Fielding

Great earthquakes rarely occur within active accretionary prisms, despite the intense long‐term deformation associated with the formation of these geologic structures. This paucity of earthquakes is often attributed to partitioning of deformation across multiple structures as well as aseismic deformation within and at the base of the prism (Davis et al., 1983). We use teleseismic data and satellite optical and radar imaging of the 2013 M_w 7.7 earthquake that occurred on the southeastern edge of the Makran plate boundary zone to study this unexpected earthquake. We first compute a multiple point‐source solution from W‐phase waveforms to estimate fault geometry and rupture duration and timing. We then derive the distribution of subsurface fault slip from geodetic coseismic offsets. We sample for the slip posterior probability density function using a Bayesian approach, including a full description of the data covariance and accounting for errors in the elastic structure of the crust. The rupture nucleated on a subvertical segment, branching out of the Chaman fault system, and grew into a major earthquake along a 50° north‐dipping thrust fault with significant along‐strike curvature. Fault slip propagated at an average speed of 3.0  km/s for about 180 km and is concentrated in the top 10 km with no displacement on the underlying decollement. This earthquake does not exhibit significant slip deficit near the surface, nor is there significant segmentation of the rupture. We propose that complex interaction between the subduction accommodating the Arabia–Eurasia convergence to the south and the Ornach Nal fault plate boundary between India and Eurasia resulted in the significant strain gradient observed prior to this earthquake. Convergence in this region is accommodated both along the subduction megathrust and as internal deformation of the accretionary wedge.


Geophysical Research Letters | 2016

The 2015 Gorkha earthquake: A large event illuminating the Main Himalayan Thrust fault

Zacharie Duputel; Jerome Vergne; Luis Rivera; Gérard Wittlinger; Véronique Farra; György Hetényi

The 2015 Gorkha earthquake sequence provides an outstanding opportunity to better characterize the geometry of the Main Himalayan Thrust (MHT). To overcome limitations due to unaccounted lateral heterogeneities, we perform Centroid Moment Tensor inversions in a 3-D Earth model for the main shock and largest aftershocks. In parallel, we recompute S-toP and P-to-S receiver functions from the Hi-CLIMB data set. Inverted centroid locations fall within a low-velocity zone at 10–15 km depth and corresponding to the subhorizontal portion of the MHT that ruptured during the Gorkha earthquake. North of the main shock hypocenter, receiver functions indicate a north dipping feature that likely corresponds to the midcrustal ramp connecting the flat portion to the deep part of the MHT. Our analysis of the main shock indicates that long-period energy emanated updip of high-frequency radiation sources previously inferred. This frequency-dependent rupture process might be explained by different factors such as fault geometry and the presence of fluids.


Geophysical Research Letters | 2015

The Iquique earthquake sequence of April 2014: Bayesian modeling accounting for prediction uncertainty

Zacharie Duputel; J. H. Jiang; Romain Jolivet; Mark Simons; Luis Rivera; Jean-Paul Ampuero; Bryan Riel; S. E. Owen; Angelyn W. Moore; Sergey V. Samsonov; F. Ortega Culaciati; Sarah E. Minson

The subduction zone in northern Chile is a well-identified seismic gap that last ruptured in 1877. On 1 April 2014, this region was struck by a large earthquake following a two week long series of foreshocks. This study combines a wide range of observations, including geodetic, tsunami, and seismic data, to produce a reliable kinematic slip model of the Mw=8.1 main shock and a static slip model of the Mw=7.7 aftershock. We use a novel Bayesian modeling approach that accounts for uncertainty in the Greens functions, both static and dynamic, while avoiding nonphysical regularization. The results reveal a sharp slip zone, more compact than previously thought, located downdip of the foreshock sequence and updip of high-frequency sources inferred by back-projection analysis. Both the main shock and the Mw=7.7 aftershock did not rupture to the trench and left most of the seismic gap unbroken, leaving the possibility of a future large earthquake in the region.


Geophysical Research Letters | 2011

Constraints on the long-period moment-dip tradeoff for the Tohoku earthquake

Victor C. Tsai; Gavin P. Hayes; Zacharie Duputel

Since the work of Kanamori and Given (1981), it has been recognized that shallow, pure dip-slip earthquakes excite long-period surface waves such that it is difficult to independently constrain the moment (M_0) and the dip (δ) of the source mechanism, with only the product M_0 sin(2δ) being well constrained. Because of this, it is often assumed that the primary discrepancies between the moments of shallow, thrust earthquakes are due to this moment-dip tradeoff. In this work, we quantify how severe this moment-dip tradeoff is depending on the depth of the earthquake, the station distribution, the closeness of the mechanism to pure dip-slip, and the quality of the data. We find that both long-period Rayleigh and Love wave modes have moment-dip resolving power even for shallow events, especially when stations are close to certain azimuths with respect to mechanism strike and when source depth is well determined. We apply these results to USGS W phase inversions of the recent M9.0 Tohoku, Japan earthquake and estimate the likely uncertainties in dip and moment associated with the moment- dip tradeoff. After discussing some of the important sources of moment and dip error, we suggest two methods for potentially improving this uncertainty.


Geophysical Research Letters | 2016

Uncovering the hidden signature of a magmatic recharge at Piton de la Fournaise volcano using small earthquakes

Olivier Lengliné; Zacharie Duputel; Valérie Ferrazzini

We apply a template matching method to detect and locate preeruptive earthquakes at Piton de la Fournaise volcano in 2014 and 2015. This approach enabled the detection of many events and unveiled persistent seismicity features through multiple eruptions. Shallow earthquakes define a ring-shaped structure beneath the main crater. The repetitive occurrence of events along this structure suggests that it corresponds to a preexisting zone of weakness within the edifice. We also show evidence of deep magma transfer in 2015. More than 5000 deep earthquakes define an upward migration immediately followed by the occurrence of shallow events leading to an eruption 20 days later. This suggests the creation of a hydraulic connection between the lower part of the volcanic system and a magma reservoir located near sea level. We can envisage than such replenishments of the shallow reservoir occurred in the past but were undetected because of limited deep earthquake detections.


Science Advances | 2016

Diverse rupture processes in the 2015 Peru deep earthquake doublet

Lingling Ye; Thorne Lay; Hiroo Kanamori; Zhongwen Zhan; Zacharie Duputel

The nearby Mw 7.5 and Mw 7.6 events in a deep earthquake doublet under Peru have diverse stress drops and radiation efficiency. Earthquakes in deeply subducted oceanic lithosphere can involve either brittle or dissipative ruptures. On 24 November 2015, two deep (606 and 622 km) magnitude 7.5 and 7.6 earthquakes occurred 316 s and 55 km apart. The first event (E1) was a brittle rupture with a sequence of comparable-size subevents extending unilaterally ~50 km southward with a rupture speed of ~4.5 km/s. This earthquake triggered several aftershocks to the north along with the other major event (E2), which had 40% larger seismic moment and the same duration (~20 s), but much smaller rupture area and lower rupture speed than E1, indicating a more dissipative rupture. A minor energy release ~12 s after E1 near the E2 hypocenter, possibly initiated by the S wave from E1, and a clear aftershock ~165 s after E1 also near the E2 hypocenter, suggest that E2 was likely dynamically triggered. Differences in deep earthquake rupture behavior are commonly attributed to variations in thermal state between subduction zones. However, the marked difference in rupture behavior of the nearby Peru doublet events suggests that local variations of stress state and material properties significantly contribute to diverse behavior of deep earthquakes.


Geophysical Research Letters | 2017

Aseismic slip and seismogenic coupling in the Marmara Sea: What can we learn from onland geodesy?

E. Klein; Zacharie Duputel; Frederic Masson; H. Yavasoglu; Piyush Agram

Ever since the Mw7.4 Izmit earthquake in 1999, evaluation of seismic hazard associated with the last unbroken segments of the North Anatolian fault is capital. A strong controversy remains over whether Marmara fault segments are locked or are releasing strain aseismically. Using a Bayesian approach, we propose a preliminary probabilistic interseismic model constrained by published GPS data sets. The posterior mean model show that Ganos and Cinarcik segments are locked while creep is detected in the central portion of Marmara fault. Our analysis, however, reveals that creeping segments are associated with large model uncertainties, which mainly results from the sparsity of current geodetic observations. We then discuss how the GPS network can be improved to attain more reliable assessment of interseismic slip rates. With this purpose, we implement a network optimization procedure to identify the most favorable distribution of stations measuring strain accumulation in the Marmara Sea.

Collaboration


Dive into the Zacharie Duputel's collaboration.

Top Co-Authors

Avatar

Hiroo Kanamori

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Luis Rivera

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Mark Simons

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Romain Jolivet

École Normale Supérieure

View shared research outputs
Top Co-Authors

Avatar

Victor C. Tsai

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Valérie Ferrazzini

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Ampuero

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Luis A. Rivera

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Alexandre Nercessian

Institut de Physique du Globe de Paris

View shared research outputs
Top Co-Authors

Avatar

Bryan Riel

California Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge