Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roman Osman is active.

Publication


Featured researches published by Roman Osman.


Journal of Biological Chemistry | 2005

Lactisole Interacts with the Transmembrane Domains of Human T1R3 to Inhibit Sweet Taste

Peihua Jiang; Meng Cui; Baohua Zhao; Zhan Liu; Lenore A. Snyder; Lumie M. J. Benard; Roman Osman; Robert F. Margolskee; Marianna Max

The detection of sweet-tasting compounds is mediated in large part by a heterodimeric receptor comprised of T1R2+T1R3. Lactisole, a broad-acting sweet antagonist, suppresses the sweet taste of sugars, protein sweeteners, and artificial sweeteners. Lactisoles inhibitory effect is specific to humans and other primates; lactisole does not affect responses to sweet compounds in rodents. By heterologously expressing interspecies combinations of T1R2+T1R3, we have determined that the target for lactisoles action is human T1R3. From studies with mouse/human chimeras of T1R3, we determined that the molecular basis for sensitivity to lactisole depends on only a few residues within the transmembrane region of human T1R3. Alanine substitution of residues in the transmembrane region of human T1R3 revealed 4 key residues required for sensitivity to lactisole. In our model of T1R3s seven transmembrane helices, lactisole is predicted to dock to a binding pocket within the transmembrane region that includes these 4 key residues.


Nucleic Acids Research | 2010

A systematic molecular dynamics study of nearest-neighbor effects on base pair and base pair step conformations and fluctuations in B-DNA

Richard Lavery; Krystyna Zakrzewska; David L. Beveridge; Thomas C. Bishop; David A. Case; Thomas E. Cheatham; Surjit B. Dixit; B. Jayaram; Filip Lankaš; Charles A. Laughton; John H. Maddocks; Alexis Michon; Roman Osman; Modesto Orozco; Alberto Pérez; Tanya Singh; Nada Spackova; Jiri Sponer

It is well recognized that base sequence exerts a significant influence on the properties of DNA and plays a significant role in protein–DNA interactions vital for cellular processes. Understanding and predicting base sequence effects requires an extensive structural and dynamic dataset which is currently unavailable from experiment. A consortium of laboratories was consequently formed to obtain this information using molecular simulations. This article describes results providing information not only on all 10 unique base pair steps, but also on all possible nearest-neighbor effects on these steps. These results are derived from simulations of 50–100 ns on 39 different DNA oligomers in explicit solvent and using a physiological salt concentration. We demonstrate that the simulations are converged in terms of helical and backbone parameters. The results show that nearest-neighbor effects on base pair steps are very significant, implying that dinucleotide models are insufficient for predicting sequence-dependent behavior. Flanking base sequences can notably lead to base pair step parameters in dynamic equilibrium between two conformational sub-states. Although this study only provides limited data on next-nearest-neighbor effects, we suggest that such effects should be analyzed before attempting to predict the sequence-dependent behavior of DNA.


Journal of Biological Chemistry | 2005

Identification of the Cyclamate Interaction Site within the Transmembrane Domain of the Human Sweet Taste Receptor Subunit T1R3

Peihua Jiang; Meng Cui; Baohua Zhao; Lenore A. Snyder; Lumie M. J. Benard; Roman Osman; Marianna Max; Robert F. Margolskee

The artificial sweetener cyclamate tastes sweet to humans, but not to mice. When expressed in vitro, the human sweet receptor (a heterodimer of two taste receptor subunits: hT1R2 + hT1R3) responds to cyclamate, but the mouse receptor (mT1R2 + mT1R3) does not. Using mixed-species pairings of human and mouse sweet receptor subunits, we determined that responsiveness to cyclamate requires the human form of T1R3. Using chimeras, we determined that it is the transmembrane domain of hT1R3 that is required for the sweet receptor to respond to cyclamate. Using directed mutagenesis, we identified several amino acid residues within the transmembrane domain of T1R3 that determine differential responsiveness to cyclamate of the human versus mouse sweet receptors. Alanine-scanning mutagenesis of residues predicted to line a transmembrane domain binding pocket in hT1R3 identified six residues specifically involved in responsiveness to cyclamate. Using molecular modeling, we docked cyclamate within the transmembrane domain of T1R3. Our model predicts substantial overlap in the hT1R3 binding pockets for the agonist cyclamate and the inverse agonist lactisole. The transmembrane domain of T1R3 is likely to play a critical role in the interconversion of the sweet receptor from the ground state to the active state.


Current Pharmaceutical Design | 2006

The Heterodimeric Sweet Taste Receptor has Multiple Potential Ligand Binding Sites

Meng Cui; Peihua Jiang; Emeline L. Maillet; Marianna Max; Robert F. Margolskee; Roman Osman

The sweet taste receptor is a heterodimer of two G protein coupled receptors, T1R2 and T1R3. This discovery has increased our understanding at the molecular level of the mechanisms underlying sweet taste. Previous experimental studies using sweet receptor chimeras and mutants show that there are at least three potential binding sites in this heterodimeric receptor. Receptor activity toward the artificial sweeteners aspartame and neotame depends on residues in the amino terminal domain of human T1R2. In contrast, receptor activity toward the sweetener cyclamate and the sweet taste inhibitor lactisole depends on residues within the transmembrane domain of human T1R3. Furthermore, receptor activity toward the sweet protein brazzein depends on the cysteine rich domain of human T1R3. Although crystal structures are not available for the sweet taste receptor, useful homology models can be developed based on appropriate templates. The amino terminal domain, cysteine rich domain and transmembrane helix domain of T1R2 and T1R3 have been modeled based on the crystal structures of metabotropic glutamate receptor type 1, tumor necrosis factor receptor, and bovine rhodopsin, respectively. We have used homology models of the sweet taste receptors, molecular docking of sweet ligands to the receptors, and site-directed mutagenesis of the receptors to identify potential ligand binding sites of the sweet taste receptor. These studies have led to a better understanding of the structure and function of this heterodimeric receptor, and can act as a guide for rational structure-based design of novel non-caloric sweeteners, which can be used in the fighting against obesity and diabetes.


Endocrinology | 2001

Minireview: Insights into G Protein-Coupled Receptor Function Using Molecular Models1

Marvin C. Gershengorn; Roman Osman

G protein-coupled receptors (GPCRs) represent the largest family of signal-transducing molecules known. They convey signals for light and many extracellular regulatory molecules. GPCRs have been found to be dysfunctional/dysregulated in a growing number of human diseases and have been estimated to be the targets of more than 30% of the drugs used in clinical medicine today. Thus, understanding how GPCRs function at the molecular level is an important goal of biological research. In order to understand function at this level, it is necessary to delineate the 3D structure of these receptors. Recently, the 3D structure of rhodopsin has been resolved, but in the absence of experimentally determined 3D structures of other GPCRs, a powerful approach is to construct a theoretical model for the receptor and refine it based on experimental results. Computer-generated models for many GPCRs have been constructed. In this article, we will review these studies. We will place the greatest emphasis on an iterative, bi-directional approach in which models are used to generate hypotheses that are tested by experimentation and the experimental findings are, in turn, used to refine the model. The success of this approach is due to the synergistic interaction between theory and experiment.G protein-coupled receptors (GPCRs) represent the largest family of signal-transducing molecules known. They convey signals for light and many extracellular regulatory molecules. GPCRs have been found to be dysfunctional/dysregulated in a growing number of human diseases and have been estimated to be the targets of more than 30% of the drugs used in clinical medicine today. Thus, understanding how GPCRs function at the molecular level is an important goal of biological research. In order to understand function at this level, it is necessary to delineate the 3D structure of these receptors. Recently, the 3D structure of rhodopsin has been resolved, but in the absence of experimentally determined 3D structures of other GPCRs, a powerful approach is to construct a theoretical model for the receptor and refine it based on experimental results. Computer-generated models for many GPCRs have been constructed. In this article, we will review these studies. We will place the greatest emphasis on an iterative, bi-d...


Nucleic Acids Research | 2014

μABC: a systematic microsecond molecular dynamics study of tetranucleotide sequence effects in B-DNA.

Marco Pasi; John H. Maddocks; David L. Beveridge; Thomas C. Bishop; David A. Case; Thomas E. Cheatham; Pablo D. Dans; B. Jayaram; Filip Lankaš; Charles A. Laughton; Jonathan S. Mitchell; Roman Osman; Modesto Orozco; Alberto Pérez; Daiva Petkevičiūtė; Nada Spackova; Jiri Sponer; Krystyna Zakrzewska; Richard Lavery

We present the results of microsecond molecular dynamics simulations carried out by the ABC group of laboratories on a set of B-DNA oligomers containing the 136 distinct tetranucleotide base sequences. We demonstrate that the resulting trajectories have extensively sampled the conformational space accessible to B-DNA at room temperature. We confirm that base sequence effects depend strongly not only on the specific base pair step, but also on the specific base pairs that flank each step. Beyond sequence effects on average helical parameters and conformational fluctuations, we also identify tetranucleotide sequences that oscillate between several distinct conformational substates. By analyzing the conformation of the phosphodiester backbones, it is possible to understand for which sequences these substates will arise, and what impact they will have on specific helical parameters.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Autoinhibitory regulation of SCF-mediated ubiquitination by human cullin 1's C-terminal tail

Kosj Yamoah; Taiji Oashi; Antonio Sarikas; Stefan Gazdoiu; Roman Osman; Zhen-Qiang Pan

SCF (Skp1·CUL1·F-box protein·ROC1) E3 ubiquitin ligase and Cdc34 E2-conjugating enzyme catalyze polyubiquitination in a precisely regulated fashion. Here, we describe biochemical evidence suggesting an autoinhibitory role played by the human CUL1 ECTD (extreme C-terminal domain; spanning the C-terminal 50 amino acids), a region that is predicted to contact the ROC1 RING finger protein by structural studies. We showed that ECTD did not contribute to CUL1s stable association with ROC1. Remarkably, deletion of ECTD, or missense mutations designed to disrupt the predicted ECTD·ROC1 interaction, markedly increased the ability of SCFβTrCP2 to promote IκBα polyubiquitination and polyubiquitin chain assembly by Cdc34 in vitro. Thus, disruption of ECTD yields in vitro effects that parallel SCF activation by Nedd8 conjugation to CUL1. We propose that SCF may be subject to autoinhibitory regulation, in which Nedd8 conjugation acts as a molecular switch to drive the E3 into an active state by diminishing the inhibitory ECTD·ROC1 interaction.


Proteins | 2004

Unfolded state of polyalanine is a segmented polyproline II helix

Alex Kentsis; Mihaly Mezei; Tatyana Gindin; Roman Osman

Definition of the unfolded state of proteins is essential for understanding their stability and folding on biological timescales. Here, we find that under near physiological conditions the configurational ensemble of the unfolded state of the simplest protein structure, polyalanine α‐helix, cannot be described by the commonly used Flory random coil model, in which configurational probabilities are derived from conformational preferences of individual residues. We utilize novel effectively ergodic sampling algorithms in the presence of explicit aqueous solvation, and observe water‐mediated formation of polyproline II helical (PII) structure in the natively unfolded state of polyalanine, and its facilitation of α‐helix formation in longer peptides. The segmented PII helical coil preorganizes the unfolded state ensemble for folding pathway entry by reducing the conformational space available to the diffusive search. Thus, as much as half of the folding search in polyalanine is accomplished by preorganization of the unfolded state. Proteins 2004.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Molecular amino acid signatures in the MHC class II peptide-binding pocket predispose to autoimmune thyroiditis in humans and in mice

Francesca Menconi; Maria Cristina Monti; David A. Greenberg; Taiji Oashi; Roman Osman; Terry F. Davies; Yoshiyuki Ban; Eric M. Jacobson; Erlinda Concepcion; Cheuk Wun Li; Yaron Tomer

Hashimotos thyroiditis (HT) is associated with HLA, but the associated allele is still controversial. We hypothesized that specific HLA-DR pocket-sequence variants are associated with HT and that similar variants in the murine I-E locus (homologous to HLA-DR) predispose to experimental autoimmune thyroiditis (EAT), a classical mouse model of HT. Therefore, we sequenced the polymorphic exon 2 of the HLA-DR gene in 94 HT patients and 149 controls. In addition, we sequenced exon 2 of the I-E gene in 22 strains of mice, 12 susceptible to EAT and 10 resistant. Using logistic regression analysis, we identified a pocket amino acid signature, Tyr-26, Tyr-30, Gln-70, Lys-71, strongly associated with HT (P = 6.18 × 10−5, OR = 3.73). Lys-71 showed the strongest association (P = 1.7 × 10−8, OR = 2.98). This association was seen across HLA-DR types. The 5-aa haplotype Tyr-26, Tyr-30, Gln-70, Lys-71, Arg-74 also was associated with HT (P = 3.66 × 10−4). In mice, the I-E pocket amino acids Val-28, Phe-86, and Asn-88 were strongly associated with EAT. Structural modeling studies demonstrated that pocket P4 was critical for the development of HT, and pockets P1 and P4 influenced susceptibility to EAT. Surprisingly, the structures of the HT- and EAT-susceptible pockets were different. We conclude that specific MHC II pocket amino acid signatures determine susceptibility to HT and EAT by causing structural changes in peptide-binding pockets that may influence peptide binding, selectivity, and presentation. Because the HT- and EAT-associated pockets are structurally different, it is likely that distinct antigenic peptides are associated with HT and EAT.


Biophysical Journal | 2010

A Molecular Dynamics Investigation of Lipid Bilayer Perturbation by PIP2

Dmitry Lupyan; Mihaly Mezei; Diomedes E. Logothetis; Roman Osman

Phosphoinositides like phosphatidylinositol 4,5-bisphosphate (PIP(2)) are negatively charged lipids that play a pivotal role in membrane trafficking, signal transduction, and protein anchoring. We have designed a force field for the PIP(2) headgroup using quantum mechanical methods and characterized its properties inside a lipid bilayer using molecular dynamics simulations. Macroscopic properties such as area/headgroup, density profiles, and lipid order parameters calculated from these simulations agree well with the experimental values. However, microscopically, the PIP(2) introduces a local perturbation of the lipid bilayer. The average PIP(2) headgroup orientation of 45 degrees relative to the bilayer normal induces a unique, distance-dependent organization of the lipids that surround PIP(2). The headgroups of these lipids preferentially orient closer to the bilayer normal. This perturbation creates a PIP(2) lipid microdomain with the neighboring lipids. We propose that the PIP(2) lipid microdomain enables the PIP(2) to function as a membrane-bound anchoring molecule.

Collaboration


Dive into the Roman Osman's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mihaly Mezei

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Sid Topiol

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Marvin C. Gershengorn

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meng Cui

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karol Miaskiewicz

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Eleanore Seibert

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Peihua Jiang

Monell Chemical Senses Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge