Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roman Sasik is active.

Publication


Featured researches published by Roman Sasik.


Proceedings of the National Academy of Sciences of the United States of America | 2005

Comparative gene expression analysis of blood and brain provides concurrent validation of SELENBP1 up-regulation in schizophrenia

Stephen J. Glatt; Ian Everall; William S. Kremen; Jacques Corbeil; Roman Sasik; Negar Khanlou; Mark Han; Choong-Chin Liew; Ming T. Tsuang

Microarray techniques hold great promise for identifying risk factors for schizophrenia (SZ) but have not yet generated widely reproducible results due to methodological differences between studies and the high risk of type I inferential errors. Here we established a protocol for conservative analysis and interpretation of gene expression data from the dorsolateral prefrontal cortex of SZ patients using statistical and bioinformatic methods that limit false positives. We also compared brain gene expression profiles with those from peripheral blood cells of a separate sample of SZ patients to identify disease-associated genes that generalize across tissues and populations and further substantiate the use of gene expression profiling of blood for detecting valid SZ biomarkers. Implementing this systematic approach, we: (i) discovered 177 putative SZ risk genes in brain, 28 of which map to linked chromosomal loci; (ii) delineated six biological processes and 12 molecular functions that may be particularly disrupted in the illness; (iii) identified 123 putative SZ biomarkers in blood, 6 of which (BTG1, GSK3A, HLA-DRB1, HNRPA3, SELENBP1, and SFRS1) had corresponding differential expression in brain; (iv) verified the differential expression of the strongest candidate SZ biomarker (SELENBP1) in blood; and (v) demonstrated neuronal and glial expression of SELENBP1 protein in brain. The continued application of this approach in other brain regions and populations should facilitate the discovery of highly reliable and reproducible candidate risk genes and biomarkers for SZ. The identification of valid peripheral biomarkers for SZ may ultimately facilitate early identification, intervention, and prevention efforts as well.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver

Christoph H. Österreicher; Melitta Penz-Österreicher; Sergei I. Grivennikov; Monica Guma; Ekaterina K. Koltsova; Christian Datz; Roman Sasik; Gary Hardiman; Michael Karin; David A. Brenner

Cirrhosis is the end result of chronic liver disease. Hepatic stellate cells (HSC) are believed to be the major source of collagen-producing myofibroblasts in cirrhotic livers. Portal fibroblasts, bone marrow-derived cells, and epithelial to mesenchymal transition (EMT) might also contribute to the myofibroblast population in damaged livers. Fibroblast-specific protein 1 (FSP1, also called S100A4) is considered a marker of fibroblasts in different organs undergoing tissue remodeling and is used to identify fibroblasts derived from EMT in several organs including the liver. The aim of this study was to characterize FSP1-positive cells in human and experimental liver disease. FSP1-positive cells were increased in human and mouse experimental liver injury including liver cancer. However, FSP1 was not expressed by HSC or type I collagen-producing fibroblasts. Likewise, FSP1-positive cells did not express classical myofibroblast markers, including αSMA and desmin, and were not myofibroblast precursors in injured livers as evaluated by genetic lineage tracing experiments. Surprisingly, FSP1-positive cells expressed F4/80 and other markers of the myeloid-monocytic lineage as evaluated by double immunofluorescence staining, cell fate tracking, flow cytometry, and transcriptional profiling. Similar results were obtained for bone marrow-derived and peritoneal macrophages. FSP1-positive cells were characterized by increased expression of COX2, osteopontin, inflammatory cytokines, and chemokines but reduced expression of MMP3 and TIMP3 compared with Kupffer cells/macrophages. These findings suggest that FSP1 is a marker of a specific subset of inflammatory macrophages in liver injury, fibrosis, and cancer.


Nature Medicine | 2014

A Gpr120-selective agonist improves insulin resistance and chronic inflammation in obese mice

Da Young Oh; Evelyn Walenta; Taro E. Akiyama; William S. Lagakos; Denise Lackey; Ariane R. Pessentheiner; Roman Sasik; Nasun Hah; Tyler J. Chi; Jason M. Cox; Mary Ann Powels; Jerry Di Salvo; Christopher Joseph Sinz; Steven M. Watkins; Aaron M. Armando; Heekyung Chung; Ronald M. Evans; Oswald Quehenberger; Joanne C. McNelis; Juliane G. Bogner-Strauss; Jerrold M. Olefsky

It is well known that the ω–3 fatty acids (ω–3-FAs; also known as n–3 fatty acids) can exert potent anti-inflammatory effects. Commonly consumed as fish products, dietary supplements and pharmaceuticals, ω–3-FAs have a number of health benefits ascribed to them, including reduced plasma triglyceride levels, amelioration of atherosclerosis and increased insulin sensitivity. We reported that Gpr120 is the functional receptor for these fatty acids and that ω–3-FAs produce robust anti-inflammatory, insulin-sensitizing effects, both in vivo and in vitro, in a Gpr120-dependent manner. Indeed, genetic variants that predispose to obesity and diabetes have been described in the gene encoding GPR120 in humans (FFAR4). However, the amount of fish oils that would have to be consumed to sustain chronic agonism of Gpr120 is too high to be practical, and, thus, a high-affinity small-molecule Gpr120 agonist would be of potential clinical benefit. Accordingly, Gpr120 is a widely studied drug discovery target within the pharmaceutical industry. Gpr40 is another lipid-sensing G protein–coupled receptor, and it has been difficult to identify compounds with a high degree of selectivity for Gpr120 over Gpr40 (ref. 11). Here we report that a selective high-affinity, orally available, small-molecule Gpr120 agonist (cpdA) exerts potent anti-inflammatory effects on macrophages in vitro and in obese mice in vivo. Gpr120 agonist treatment of high-fat diet–fed obese mice causes improved glucose tolerance, decreased hyperinsulinemia, increased insulin sensitivity and decreased hepatic steatosis. This suggests that Gpr120 agonists could become new insulin-sensitizing drugs for the treatment of type 2 diabetes and other human insulin-resistant states in the future.


Cell | 2014

Increased Adipocyte O2 Consumption Triggers HIF-1α, Causing Inflammation and Insulin Resistance in Obesity

Yun Sok Lee; Jung Whan Kim; Olivia Osborne; Da Young Oh; Roman Sasik; Simon Schenk; Ai Chen; Heekyung Chung; Anne N. Murphy; Steven M. Watkins; Oswald Quehenberger; Randall S. Johnson; Jerrold M. Olefsky

Adipose tissue hypoxia and inflammation have been causally implicated in obesity-induced insulin resistance. Here, we report that, early in the course of high-fat diet (HFD) feeding and obesity, adipocyte respiration becomes uncoupled, leading to increased oxygen consumption and a state of relative adipocyte hypoxia. These events are sufficient to trigger HIF-1α induction, setting off the chronic adipose tissue inflammatory response characteristic of obesity. At the molecular level, these events involve saturated fatty acid stimulation of the adenine nucleotide translocase 2 (ANT2), an inner mitochondrial membrane protein, which leads to the uncoupled respiratory state. Genetic or pharmacologic inhibition of either ANT2 or HIF-1α can prevent or reverse these pathophysiologic events, restoring a state of insulin sensitivity and glucose tolerance. These results reveal the sequential series of events in obesity-induced inflammation and insulin resistance.


Nature | 2016

PI3Kγ is a molecular switch that controls immune suppression

Megan M. Kaneda; Karen Messer; Natacha Ralainirina; Hongying Li; Christopher J. Leem; Sara Gorjestani; Gyunghwi Woo; Abraham V. Nguyen; Camila C. Figueiredo; Philippe Foubert; Michael C. Schmid; Melissa Pink; David G. Winkler; Matthew Rausch; Vito J. Palombella; Jeffery L. Kutok; Karen McGovern; Kelly A. Frazer; Xuefeng Wu; Michael Karin; Roman Sasik; Ezra E.W. Cohen; Judith A. Varner

Macrophages play critical, but opposite, roles in acute and chronic inflammation and cancer. In response to pathogens or injury, inflammatory macrophages express cytokines that stimulate cytotoxic T cells, whereas macrophages in neoplastic and parasitic diseases express anti-inflammatory cytokines that induce immune suppression and may promote resistance to T cell checkpoint inhibitors. Here we show that macrophage PI 3-kinase γ controls a critical switch between immune stimulation and suppression during inflammation and cancer. PI3Kγ signalling through Akt and mTor inhibits NFκB activation while stimulating C/EBPβ activation, thereby inducing a transcriptional program that promotes immune suppression during inflammation and tumour growth. By contrast, selective inactivation of macrophage PI3Kγ stimulates and prolongs NFκB activation and inhibits C/EBPβ activation, thus promoting an immunostimulatory transcriptional program that restores CD8+ T cell activation and cytotoxicity. PI3Kγ synergizes with checkpoint inhibitor therapy to promote tumour regression and increased survival in mouse models of cancer. In addition, PI3Kγ-directed, anti-inflammatory gene expression can predict survival probability in cancer patients. Our work thus demonstrates that therapeutic targeting of intracellular signalling pathways that regulate the switch between macrophage polarization states can control immune suppression in cancer and other disorders.


PLOS Genetics | 2011

Mechanisms establishing TLR4-responsive activation states of inflammatory response genes.

Laure Escoubet-Lozach; Christopher Benner; Minna U. Kaikkonen; Jean Lozach; Sven Heinz; Nathan Spann; Andrea Crotti; Josh Stender; Serena Ghisletti; Donna Reichart; Christine S. Cheng; Rosa Luna; Colleen Ludka; Roman Sasik; Ivan Garcia-Bassets; Alexander Hoffmann; Shankar Subramaniam; Gary Hardiman; Michael G. Rosenfeld; Christopher K. Glass

Precise control of the innate immune response is required for resistance to microbial infections and maintenance of normal tissue homeostasis. Because this response involves coordinate regulation of hundreds of genes, it provides a powerful biological system to elucidate the molecular strategies that underlie signal- and time-dependent transitions of gene expression. Comprehensive genome-wide analysis of the epigenetic and transcription status of the TLR4-induced transcriptional program in macrophages suggests that Toll-like receptor 4 (TLR4)-dependent activation of nearly all immediate/early- (I/E) and late-response genes results from a sequential process in which signal-independent factors initially establish basal levels of gene expression that are then amplified by signal-dependent transcription factors. Promoters of I/E genes are distinguished from those of late genes by encoding a distinct set of signal-dependent transcription factor elements, including TATA boxes, which lead to preferential binding of TBP and basal enrichment for RNA polymerase II immediately downstream of transcriptional start sites. Global nuclear run-on (GRO) sequencing and total RNA sequencing further indicates that TLR4 signaling markedly increases the overall rates of both transcriptional initiation and the efficiency of transcriptional elongation of nearly all I/E genes, while RNA splicing is largely unaffected. Collectively, these findings reveal broadly utilized mechanisms underlying temporally distinct patterns of TLR4-dependent gene activation required for homeostasis and effective immune responses.


Environmental Health Perspectives | 2009

Analysis of Endocrine Disruption in Southern California Coastal Fish Using an Aquatic Multispecies Microarray

Michael E. Baker; Barbara Ruggeri; L. James Sprague; Colleen Eckhardt-Ludka; Jennifer Lapira; Ivan Wick; Laura Soverchia; Massimo Ubaldi; Alberta Maria Polzonetti-Magni; Doris E. Vidal-Dorsch; Steven M. Bay; Joseph R. Gully; Jesus A. Reyes; Kevin M. Kelley; Daniel Schlenk; Ellen C. Breen; Roman Sasik; Gary Hardiman

Background Endocrine disruptors include plasticizers, pesticides, detergents, and pharmaceuticals. Turbot and other flatfish are used to characterize the presence of chemicals in the marine environment. Unfortunately, there are relatively few genes of turbot and other flatfish in GenBank, which limits the use of molecular tools such as microarrays and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) to study disruption of endocrine responses in sentinel fish captured by regulatory agencies. Objectives We fabricated a multigene cross-species microarray as a diagnostic tool to screen the effects of environmental chemicals in fish, for which there is minimal genomic information. The array included genes that are involved in the actions of adrenal and sex steroids, thyroid hormone, and xenobiotic responses. This microarray will provide a sensitive tool for screening for the presence of chemicals with adverse effects on endocrine responses in coastal fish species. Methods We used a custom multispecies microarray to study gene expression in wild hornyhead turbot (Pleuronichthys verticalis) collected from polluted and clean coastal waters and in laboratory male zebrafish (Danio rerio) after exposure to estradiol and 4-nonylphenol. We measured gene-specific expression in turbot liver by qRT-PCR and correlated it to microarray data. Results Microarray and qRT-PCR analyses of livers from turbot collected from polluted areas revealed altered gene expression profiles compared with those from nonaffected areas. Conclusions The agreement between the array data and qRT-PCR analyses validates this multispecies microarray. The microarray measurement of gene expression in zebrafish, which are phylogenetically distant from turbot, indicates that this multispecies microarray will be useful for measuring endocrine responses in other fish.


American Journal of Physiology-lung Cellular and Molecular Physiology | 2008

CRTH2 antagonism significantly ameliorates airway hyperreactivity and downregulates inflammation-induced genes in a mouse model of airway inflammation

Nicholas W. Lukacs; Aaron A. Berlin; Karin Franz-Bacon; Roman Sasik; L. James Sprague; Tai Wei Ly; Gary Hardiman; Stefen A. Boehme; Kevin B. Bacon

Prostaglandin D(2), the ligand for the G protein-coupled receptors DP1 and CRTH2, has been implicated in the pathogenesis of the allergic response in diseases such as asthma, rhinitis, and atopic dermatitis. This prostanoid also fulfills a number of physiological, anti-inflammatory roles through its receptor DP1. We investigated the role of PGD(2) and CRTH2 in allergic pulmonary inflammation by using a highly potent and specific antagonist of CRTH2. Administration of this antagonist ameliorated inflammation caused by either acute or subchronic sensitization using the cockroach egg antigen. Gene expression and ELISA analysis revealed that there was reduced proinflammatory cytokine mRNA or protein produced, as well as a wide array of genes associated with the Th2-type proinflammatory response. Importantly, the CRTH2 antagonist reduced antigen-specific IgE, IgG1, and IgG2a antibody levels as well as decreased mucus deposition and leukocyte infiltration in the large airways. Collectively, these findings suggest that the PGD(2)-CRTH2 activation axis has a pivotal role in mediating the inflammation and the underlying immune response in a T cell-driven model of allergic airway inflammation.


Nature Methods | 2017

Combinatorial CRISPR–Cas9 screens for de novo mapping of genetic interactions

John Paul Shen; Dongxin Zhao; Roman Sasik; Jens Luebeck; Amanda Birmingham; Ana Bojorquez-Gomez; Katherine Licon; Kristin Klepper; Daniel Pekin; Alex N. Beckett; Kyle Salinas Sanchez; Alex Thomas; Chih-Chung Kuo; Dan Du; Assen Roguev; Nathan E. Lewis; Aaron N. Chang; Jason F. Kreisberg; Nevan J. Krogan; Lei S. Qi; Trey Ideker; Prashant Mali

We developed a systematic approach to map human genetic networks by combinatorial CRISPR–Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies.


PLOS ONE | 2014

The long non-coding HOTAIR is modulated by cyclic stretch and WNT/β-CATENIN in human aortic valve cells and is a novel repressor of calcification genes.

Katrina Carrion; Jeffrey Dyo; Vishal Patel; Roman Sasik; Salah A. Mohamed; Gary Hardiman; Vishal Nigam

Aortic valve calcification is a significant and serious clinical problem for which there are no effective medical treatments. Individuals born with bicuspid aortic valves, 1–2% of the population, are at the highest risk of developing aortic valve calcification. Aortic valve calcification involves increased expression of calcification and inflammatory genes. Bicuspid aortic valve leaflets experience increased biomechanical strain as compared to normal tricuspid aortic valves. The molecular pathogenesis involved in the calcification of BAVs are not well understood, especially the molecular response to mechanical stretch. HOTAIR is a long non-coding RNA (lncRNA) that has been implicated with cancer but has not been studied in cardiac disease. We have found that HOTAIR levels are decreased in BAVs and in human aortic interstitial cells (AVICs) exposed to cyclic stretch. Reducing HOTAIR levels via siRNA in AVICs results in increased expression of calcification genes. Our data suggest that β-CATENIN is a stretch responsive signaling pathway that represses HOTAIR. This is the first report demonstrating that HOTAIR is mechanoresponsive and repressed by WNT β-CATENIN signaling. These findings provide novel evidence that HOTAIR is involved in aortic valve calcification.

Collaboration


Dive into the Roman Sasik's collaboration.

Top Co-Authors

Avatar

Gary Hardiman

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Trey Ideker

University of California

View shared research outputs
Top Co-Authors

Avatar

Dongxin Zhao

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Prashant Mali

University of California

View shared research outputs
Top Co-Authors

Avatar

John Paul Shen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge