Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Trey Ideker is active.

Publication


Featured researches published by Trey Ideker.


Bioinformatics | 2011

Cytoscape 2.8

Michael Smoot; Keiichiro Ono; Johannes Ruscheinski; Peng-Liang Wang; Trey Ideker

Summary: Cytoscape is a popular bioinformatics package for biological network visualization and data integration. Version 2.8 introduces two powerful new features—Custom Node Graphics and Attribute Equations—which can be used jointly to greatly enhance Cytoscapes data integration and visualization capabilities. Custom Node Graphics allow an image to be projected onto a node, including images generated dynamically or at remote locations. Attribute Equations provide Cytoscape with spreadsheet-like functionality in which the value of an attribute is computed dynamically as a function of other attributes and network properties. Availability and implementation: Cytoscape is a desktop Java application released under the Library Gnu Public License (LGPL). Binary install bundles and source code for Cytoscape 2.8 are available for download from http://cytoscape.org. Contact: [email protected]


Nature Protocols | 2007

Integration of biological networks and gene expression data using Cytoscape

Melissa S Cline; Michael Smoot; Ethan Cerami; Allan Kuchinsky; Nerius Landys; Christopher T. Workman; Rowan H. Christmas; Iliana Avila-Campilo; Michael L. Creech; Benjamin E. Gross; Kristina Hanspers; Ruth Isserlin; R. Kelley; Sarah Killcoyne; Samad Lotia; Steven Maere; John H. Morris; Keiichiro Ono; Vuk Pavlovic; Alexander R. Pico; Aditya Vailaya; Peng-Liang Wang; Annette Adler; Bruce R. Conklin; Leroy Hood; Martin Kuiper; Chris Sander; Ilya Schmulevich; Benno Schwikowski; Guy Warner

Cytoscape is a free software package for visualizing, modeling and analyzing molecular and genetic interaction networks. This protocol explains how to use Cytoscape to analyze the results of mRNA expression profiling, and other functional genomics and proteomics experiments, in the context of an interaction network obtained for genes of interest. Five major steps are described: (i) obtaining a gene or protein network, (ii) displaying the network using layout algorithms, (iii) integrating with gene expression and other functional attributes, (iv) identifying putative complexes and functional modules and (v) identifying enriched Gene Ontology annotations in the network. These steps provide a broad sample of the types of analyses performed by Cytoscape.


Molecular Systems Biology | 2007

Network-based classification of breast cancer metastasis

Han-Yu Chuang; Eunjung Lee; Yu-Tsueng Liu; Doheon Lee; Trey Ideker

Mapping the pathways that give rise to metastasis is one of the key challenges of breast cancer research. Recently, several large‐scale studies have shed light on this problem through analysis of gene expression profiles to identify markers correlated with metastasis. Here, we apply a protein‐network‐based approach that identifies markers not as individual genes but as subnetworks extracted from protein interaction databases. The resulting subnetworks provide novel hypotheses for pathways involved in tumor progression. Although genes with known breast cancer mutations are typically not detected through analysis of differential expression, they play a central role in the protein network by interconnecting many differentially expressed genes. We find that the subnetwork markers are more reproducible than individual marker genes selected without network information, and that they achieve higher accuracy in the classification of metastatic versus non‐metastatic tumors.


Cell | 2008

Global analysis of host-pathogen interactions that regulate early stage HIV-1 replication

Ronny König; Yingyao Zhou; Daniel Elleder; Tracy L. Diamond; Ghislain M. C. Bonamy; Jeffrey T. Irelan; Chih-yuan Chiang; Buu P. Tu; Paul D. De Jesus; Caroline E. Lilley; Shannon Seidel; Amanda M. Opaluch; Jeremy S. Caldwell; Matthew D. Weitzman; Kelli Kuhen; Sourav Bandyopadhyay; Trey Ideker; Anthony P. Orth; Loren Miraglia; Frederic D. Bushman; John A. T. Young; Sumit K. Chanda

Human Immunodeficiency Viruses (HIV-1 and HIV-2) rely upon host-encoded proteins to facilitate their replication. Here, we combined genome-wide siRNA analyses with interrogation of human interactome databases to assemble a host-pathogen biochemical network containing 213 confirmed host cellular factors and 11 HIV-1-encoded proteins. Protein complexes that regulate ubiquitin conjugation, proteolysis, DNA-damage response, and RNA splicing were identified as important modulators of early-stage HIV-1 infection. Additionally, over 40 new factors were shown to specifically influence the initiation and/or kinetics of HIV-1 DNA synthesis, including cytoskeletal regulatory proteins, modulators of posttranslational modification, and nucleic acid-binding proteins. Finally, 15 proteins with diverse functional roles, including nuclear transport, prostaglandin synthesis, ubiquitination, and transcription, were found to influence nuclear import or viral DNA integration. Taken together, the multiscale approach described here has uncovered multiprotein virus-host interactions that likely act in concert to facilitate the early steps of HIV-1 infection.


Nature Methods | 2012

A travel guide to Cytoscape plugins

Rintaro Saito; Michael Smoot; Keiichiro Ono; Johannes Ruscheinski; Peng Liang Wang; Samad Lotia; Alexander R. Pico; Gary D. Bader; Trey Ideker

Cytoscape is open-source software for integration, visualization and analysis of biological networks. It can be extended through Cytoscape plugins, enabling a broad community of scientists to contribute useful features. This growth has occurred organically through the independent efforts of diverse authors, yielding a powerful but heterogeneous set of tools. We present a travel guide to the world of plugins, covering the 152 publicly available plugins for Cytoscape 2.5–2.8. We also describe ongoing efforts to distribute, organize and maintain the quality of the collection.


Genome Research | 2008

Protein networks in disease

Trey Ideker; Roded Sharan

During a decade of proof-of-principle analysis in model organisms, protein networks have been used to further the study of molecular evolution, to gain insight into the robustness of cells to perturbation, and for assignment of new protein functions. Following these analyses, and with the recent rise of protein interaction measurements in mammals, protein networks are increasingly serving as tools to unravel the molecular basis of disease. We review promising applications of protein networks to disease in four major areas: identifying new disease genes; the study of their network properties; identifying disease-related subnetworks; and network-based disease classification. Applications in infectious disease, personalized medicine, and pharmacology are also forthcoming as the available protein network information improves in quality and coverage.


Molecular & Cellular Proteomics | 2002

Complementary Profiling of Gene Expression at the Transcriptome and Proteome Levels in Saccharomyces cerevisiae

Timothy J. Griffin; Steven P. Gygi; Trey Ideker; Beate Rist; Jimmy K. Eng; Leroy Hood; Ruedi Aebersold

Using an integrated genomic and proteomic approach, we have investigated the effects of carbon source perturbation on steady-state gene expression in the yeast Saccharomyces cerevisiae growing on either galactose or ethanol. For many genes, significant differences between the abundance ratio of the messenger RNA transcript and the corresponding protein product were observed. Insights into the perturbative effects on genes involved in respiration, energy generation, and protein synthesis were obtained that would not have been apparent from measurements made at either the messenger RNA or protein level alone, illustrating the power of integrating different types of data obtained from the same sample for the comprehensive characterization of biological systems and processes.


Nature | 2010

Human Host Factors Required for Influenza Virus Replication

Renate König; Silke Stertz; Yingyao Zhou; Atsushi Inoue; H.-Heinrich Hoffmann; Suchita Bhattacharyya; Judith G. Alamares; Donna M. Tscherne; Mila Brum Ortigoza; Yuhong Liang; Qinshan Gao; Shane E. Andrews; Sourav Bandyopadhyay; Paul D. De Jesus; Buu P. Tu; Lars Pache; Crystal Shih; Anthony P. Orth; Ghislain M. C. Bonamy; Loren Miraglia; Trey Ideker; Adolfo García-Sastre; John A. T. Young; Peter Palese; Megan L. Shaw; Sumit K. Chanda

Influenza A virus is an RNA virus that encodes up to 11 proteins and this small coding capacity demands that the virus use the host cellular machinery for many aspects of its life cycle. Knowledge of these host cell requirements not only informs us of the molecular pathways exploited by the virus but also provides further targets that could be pursued for antiviral drug development. Here we use an integrative systems approach, based on genome-wide RNA interference screening, to identify 295 cellular cofactors required for early-stage influenza virus replication. Within this group, those involved in kinase-regulated signalling, ubiquitination and phosphatase activity are the most highly enriched, and 181 factors assemble into a highly significant host–pathogen interaction network. Moreover, 219 of the 295 factors were confirmed to be required for efficient wild-type influenza virus growth, and further analysis of a subset of genes showed 23 factors necessary for viral entry, including members of the vacuolar ATPase (vATPase) and COPI-protein families, fibroblast growth factor receptor (FGFR) proteins, and glycogen synthase kinase 3 (GSK3)-β. Furthermore, 10 proteins were confirmed to be involved in post-entry steps of influenza virus replication. These include nuclear import components, proteases, and the calcium/calmodulin-dependent protein kinase (CaM kinase) IIβ (CAMK2B). Notably, growth of swine-origin H1N1 influenza virus is also dependent on the identified host factors, and we show that small molecule inhibitors of several factors, including vATPase and CAMK2B, antagonize influenza virus replication.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Conserved pathways within bacteria and yeast as revealed by global protein network alignment

Brian P. Kelley; Roded Sharan; Richard M. Karp; Taylor Sittler; David E. Root; Brent R. Stockwell; Trey Ideker

We implement a strategy for aligning two protein–protein interaction networks that combines interaction topology and protein sequence similarity to identify conserved interaction pathways and complexes. Using this approach we show that the protein–protein interaction networks of two distantly related species, Saccharomyces cerevisiae and Helicobacter pylori, harbor a large complement of evolutionarily conserved pathways, and that a large number of pathways appears to have duplicated and specialized within yeast. Analysis of these findings reveals many well characterized interaction pathways as well as many unanticipated pathways, the significance of which is reinforced by their presence in the networks of both species.


Molecular Systems Biology | 2012

Differential network biology

Trey Ideker; Nevan J. Krogan

Protein and genetic interaction maps can reveal the overall physical and functional landscape of a biological system. To date, these interaction maps have typically been generated under a single condition, even though biological systems undergo differential change that is dependent on environment, tissue type, disease state, development or speciation. Several recent interaction mapping studies have demonstrated the power of differential analysis for elucidating fundamental biological responses, revealing that the architecture of an interactome can be massively re‐wired during a cellular or adaptive response. Here, we review the technological developments and experimental designs that have enabled differential network mapping at very large scales and highlight biological insight that has been derived from this type of analysis. We argue that differential network mapping, which allows for the interrogation of previously unexplored interaction spaces, will become a standard mode of network analysis in the future, just as differential gene expression and protein phosphorylation studies are already pervasive in genomic and proteomic analysis.

Collaboration


Dive into the Trey Ideker's collaboration.

Top Co-Authors

Avatar

John Paul Shen

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Matan Hofree

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keiichiro Ono

University of California

View shared research outputs
Top Co-Authors

Avatar

Hannah Carter

University of California

View shared research outputs
Top Co-Authors

Avatar

Rohith Srivas

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge